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Abstract: Duality methods for incomplete systems of consumer demand equations are 

adapted to the dual structure of variable cost functions in joint production. This allows 

the identification of necessary and sufficient restrictions on technology and cost so that 

the conditional factor demands can be written as functions of input prices, fixed inputs, 

and cost. These are observable when the variable inputs are chosen and committed to 

production, hence the identified restrictions allow ex ante conditional demands to be 

studied using observable data. This class of production technologies is consistent with all 

von Neumann-Morgenstern utility functions when ex post production is uncertain. 
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Duality Theory for Variable Costs in Joint Production 

Analysis of multi-product behavior of firms is common in agricultural economics. Tech-

niques of analysis might be based on the distance or production functions, or profit, reve-

nue, or cost functions (Färe and Primont 1995; Just, Zilberman, and Hochman 1988; 

Shumway 1983, Lopez 1983; Akridge and Hertel 1986). There is a large literature on 

functional structure and duality that helps guide empirical formulations and testing based 

on concepts of non-jointness and separability (Lau 1972, 1978; Blackorby, Primont and 

Russell 1977; Chambers 1984). For example, separability in some partition of inputs or 

outputs often results in separability in a similar partition of prices so long as aggregator 

functions are homothetic (e.g., Blackorby, Primont and Russell 1977; Lau 1978). This 

allows a researcher to test hypotheses about the structure of technology using cost or 

profit functions (Shumway 1983). Similarly, the implications of non-jointness often re-

duce to some form of additivity (Hall 1973; Kohli 1983). Such restrictions on technology 

guide empiricists as they think about aggregation based on functional structure. 

In this short paper an issue of functional structure is considered which is somewhat 

non-standard but useful to empirical work. The question considered is: when can conven-

tional short-run cost minimizing factor demands a) ( , , )=x X w y z  be written as b) 

( , , )c=x X w z , where X  and X  are vector valued functions, w the corresponding vector 

of input prices, z is a vector of fixed inputs, y is a vector of outputs, and c is cost? More 

precisely, what restrictions on technology, and hence costs, imply that the conditional 

factor demands can be written as functions of input prices, fixed inputs, and cost rather 

than the more standard representation in a)? 
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Interest in answering this question comes from two sources. First, by analogy with 

Gorman’s theory of exact aggregation, if there is cost heterogeneity, it will be natural to 

think of conditional input demands as dependent on c  just as consumer demands depend 

on income or expenditure. The second reason is more involved. There is a fairly large 

literature which proposes solutions to the specification of ex ante cost functions when 

output is uncertain under potentially risk-averse behavior (e.g., Pope and Chavas 1994; 

Pope and Just 1998; Chambers and Quiggin 2000; Chavas 2008). The essential problem 

is that if inputs are applied ex ante under stochastic production, then the outputs in a) 

can’t be observed. One approach is to make the assumptions required such that the ex 

ante cost function exists in an empirically convenient form. For example, given random 

supply shocks iε of the form 

 [ ]( , , ), ( , , ) | , , 0, 1, , ,i i i i i i yy y H E H i nε ε= + = =y z y z x y z  (1) 

the existence of a transformation function, ( , , ) 0F ≤x y z , defined over variable inputs, x, 

planned outputs, ,y  and fixed inputs, z, then the reasoning in Pope and Chavas (1994) 

implies the existence of a cost function in which y  replaces y . That is, minimizing the 

variable cost of planned output yields { }( , , ) min : ( , , ) 0,c C F= ≡ ≤ ≥
x

w y z w x x y z x 0T  for 

all von Neumann-Morgenstern utility functions in both static and dynamic environments. 

The conditional factor demands, ( , , )X w y z , will continue to depend on the unobservable 

variables, y . However, these input demand functions only depend on ( , , )cw z , all of 

which are observable, when a) reduces to b). Thus, the restrictions we seek are those that 

allow ex ante conditional demands to be studied using only observable variables.  
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To simplify notation by letting y now denote planned output, our main result on the 

dual restriction that is necessary and sufficient for ( , , )X w y z  to be written as ( , , )cX w z  

is ( , ( , ), ) ( , ( , ), )c C Fθ θ= ⇔w y z z x y z z . That is, outputs must be weakly separable from 

variable inputs in the joint production technology, or equivalently, outputs must be 

weakly separable from variable input prices in the cost function. Though this result is 

somewhat restrictive in outputs,1 it is fairly flexible in and .x z  

Duality and the Main Result 

The neoclassical model of conditional demands for variable inputs with joint production, 

fixed inputs, and production uncertainty is 

 { }( , , ) arg min : ( , , ) 0, ,F= ≤ ≥X w y z w x x y z x 0T  (2) 

where xn
++∈ ⊆x X  is an nx–vector of variable inputs, xn

++∈ ⊆w W  is an nx–vector of 

input prices, yn
++∈ ⊆y Y  is an ny–vector of outputs, zn

++∈ ⊆z Z  is an nz–vector of 

fixed inputs, : , ,F F ∞× × → ∈X Y Z C  is the transformation function that defines the 

boundary of a closed, convex production possibilities set with free disposal in the inputs 

and the outputs, : ,× × →X W Y Z X  ,∞∈X C  is the nx–vector of variable input demand 

functions, and ( , , ) ( , , ),C ≡w y z w x w y zT  : ,C ++× × →W Y Z  ,C ∞∈C  is the variable 

                                                 

1 Among other things it implies that marginal rates of product transformation are independent of the vari-

able inputs and factor intensities. 



 5 

cost function.2 By Hotelling’s/Shephard’s Lemma, we have 

 1( , , ) ( ) ( / ,..., / ) ,
xw nC C w C w= ∇ ≡ ∂ ∂ ∂X w y z w, y, z T  (3) 

where T denotes vector/matrix transposition. Note that X is positively homogeneous of 

degree zero in w . Integrating with respect to w to the variable cost function, we obtain  

 ( , , ) ( , , , ( , )),c C C θ= ≡w y z w y z y z  (4) 

where :θ × →Y Z  is the constant of integration. In the present case, this means that θ  

is constant with respect to w. The structure of θ cannot be identified from the variable 

input demands, and captures the structure of the joint production process relating to the 

fixed inputs and the outputs that is separable from the variable inputs.3 

Under standard and well-known conditions, the variable cost function is strictly de-

creasing in z, strictly increasing in y, and convex in ( , )y z . We are free to choose the sign 

of θ  so that, without loss of generality 0.C θ∂ ∂ >  

Because C  is strictly increasing in θ, it has a unique inverse, ( , , , )cθ γ= w y z , where 

:γ ++× × × →W Y Z  is the inverse of C  with respect to θ. The function ( , , , )cγ w y z  

is a quasi-indirect production function, analogous to the quasi-indirect utility function of 

                                                 

2 The paper focuses on interior solutions and smooth functions. The results can be extended in the standard 

way to corner solutions by a continuous extension of F or C to the boundary of the strictly positive orthant 

in (x,y,z) or (w,y,z) space (see, e.g., Blackorby, Primont, and Russell 1977). Also, smoothness can be re-

laxed to twice continuous differentiability with no change in the arguments that follow. 

3 We elucidate this point further in what follows. 
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consumer theory (Hausman 1981; Epstein 1982; LaFrance 1985, 1986, 1990, 2004; La-

France and Hanemann 1989; von Haefen 2002). For all interior, feasible ( , )∈ ×y z Y Z , γ 

is strictly increasing in c, strictly decreasing and quasi-convex in w, and 0° homogeneous 

in (w,c). Two identities are simple implications of the inverse function theorem, 

 ( , , , ( , , , )),c C cγ≡ w y z w y z  (5) 

and ( , , , ( , , , )).Cθ γ θ≡ w y z w y z  (6) 

This construction lets one write the conditional demands for the variable inputs as 

 ( , , , ).C c= ∇ ≡wx G w y z  (7) 

One question of particular interest – answered below – is, “What is the necessary and suf-

ficient condition for the conditional demands in a general model of joint production, (7), 

to reduce to ( , , )?c=x X w z ” 

Before addressing this question, we complete the development of the duality of vari-

able cost functions in joint production. Define the quasi-production function by 

 { }
( , )

( , , ) min ( , , , ) : , , 0 .
c

c c cυ γ≡ ≤ ≥ ≥
w

x y z w y z w x w 0T  (8) 

The name quasi-production function indicates that ( , , )υ x y z  only reveals that part of the 

structure of the joint production process associated with how the variable inputs interact 

directly with the fixed inputs and the outputs. As before, this is analogous to the situation 

where one only recovers that part of the structure of a direct utility function associated 

with the market demands for a subset of consumption goods.  

From the identity ( , ) ( , , , ( , , , ( , )))Cθ γ θ≡y z w y z w y z y z , we have  
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 { }
( , )

( , ) ( , , , ( , , , ( , )))

min ( , , , ) : , , 0

( , , ),

c

C

c c c

θ γ θ

γ

υ

≡

≥ ≤ ≥ ≥

≡

w

y z w y z w y z y z

w y z w x w

x y z

0T  (9) 

for all interior feasible ( , , ) .∈ × ×x y z X Y Z  The inequality follows from the fact that 

( , )θ y z  is feasible but is not necessarily optimal in the minimization problem. Because 

( , , ) 0F =x y z  defines the boundary of the production possibility set, and since F is 

strictly increasing in y  and strictly decreasing in z, ( , ) ( , , )θ υ=y z x y z  is logically 

equivalent to ( , , ) 0F =x y z . That is, the quasi-production function is defined equiva-

lently as the unique solution with respect to θ  of the implicit function,4 

 ( , , ) ( , , , ( , )) 0F F θ≡ =x y z x y z y z . (10) 

What class of variable cost functions generates conditional input demand equations in 

the form,  

 ( , , ) ?c=x X w z  (11) 

We can now prove the following: 

Proposition: The variable input demand equations have the structure (11) if and 

only if the variable cost function has the weakly separable structure 

                                                 

4 The existence of :θ × →Y Z  is not an issue here. For example, one could always define the function 

( , , , ( , )) ( , , ) ( , ),F Fθ θ≡ +x y z y z x y z y z  with ( , ) 0θ ≡y z , and all of the properties listed above are met. The 

issue is when θ  is the only way that y enters the joint production technology. 
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 ( , , ) ( , ( , ), ),c C C θ= ≡w y z w y z z  (12) 

and the variable cost function has the weakly separable structure (12) if and only 

if the joint production transformation function has the weakly separable structure, 

 ( , , ) ( , ( , ), ).F F θ≡x y z x y z z  (13) 

Proof: First, differentiating (12) with respect to w, Shephard’s Lemma implies, 

 .C= ∇wx  (14) 

C  is strictly monotonic in and has a unique inverse with respect to θ, say ( , , )cθ γ= w z . 

Substituting this into (14) obtains 

 ( , ( , , ), ) ( , , ).C c cγ= ∇ ≡wx w w z z X w z  (15) 

Second, and conversely, integrating (15) with respect to w returns a variable cost 

function with the separable structure in (12), where ( , )θ y z  is again the constant of inte-

gration for the system of partial differential equations. 

Third, if the representation of technology has the separable structure in (13), it fol-

lows that 

 { }arg min : ( , , ( , )) 0, ( , , ( , )).F θ θ≤ ≥ ≡w x x z y z x X w z y z0T  (16) 

This implies that the variable cost function has the separable structure 

 ( , ( , ), ) ( , ( , ), ).Cθ θ≡w X w y z z w y z zT  (17) 

So far we have shown that ( , ( , ), ) 0F θ ≤x y z z  ( , ( , ), )θ⇒ X w y z z  ( , ( , ), ).c C θ⇔ = w y z z  

To show that ( , ( , ), ) ( , ( , ), )c C θ θ= ⇒ =w y z z x X w y z z , one can proceed in one of two 

ways. The way first is to note that, given monotonicity of C  in θ  and the smoothness 
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assumption, one can apply the results of Primont and Sawyer (1993) to recover the tech-

nically efficient representation of technology.  

Perhaps a more direct and illuminating approach to establish that (12) implies the 

weakly separable production technology in the Proposition is to use the concept of the 

quasi-production function which satisfies 

 { }
( , )

( , ) min ( , , ) : , , 0 .
c

c c cυ γ≡ ≤ ≥ ≥
w

x z w z w x w 0T  (18) 

By the same logic that leads to (9) above, ( , ) ( , , ( , , ( , ))) ( , )Cθ γ θ υ≡ ≥y z x z x z y z x z  for 

all interior feasible ( , , )∈ × ×x y z X Y Z , with the boundary of the closed, convex feasible 

production possibilities set defined by equality on the far right. The marginal rates of 

transformation between outputs are therefore independent of the variable inputs,  

 ( , ) 0, , , .
( , )

i

k j

y i j k
x y

θ
θ

⎛ ⎞∂ ∂ ∂
= ∀⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

y z
y z

 (19) 

Hence, y is weakly separable from x in the transformation function (Goldman and Uzawa 

1964, Lemma 1). Therefore, since ( , , ) 0F =x y z  defines the boundary of the production 

possibility set and F is strictly increasing in y, it follows that ( , ) ( , )υ θ=x z y z  is equiva-

lent to ( , ( , ), ) 0F θ =x y z z .  

Conclusions 

An empirically important question concerns when cost-minimizing input demands can be 

stated in terms of empirically observable ex ante data: costs, input prices, and fixed or 

quasi-fixed inputs. We conclude that separability of expected output from variable inputs 

must occur in technology and similarly separability of expected or planned outputs from 
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input prices must occur in the cost function. If these restrictions are deemed too strong, 

then alternative approaches to cost function formulation must be pursued.  
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