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Abstract

In this note we analyze two-dimensional product di¤erentiation in competition between non-

pro�t �rms. Unlike for-pro�t settings, which �nds maximal di¤erentiation in the characteristic

most salient to consumers and minimal di¤erentiation in the other dimension, we show that the

presence of at least one nonpro�t �rm leads to minimal di¤erentiation in both dimensions. We

extend the analysis to mixed competition between a nonpro�t and for-pro�t �rm.
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1 Introduction

Fifty years after Hotelling (1929) concluded that competing �rms were insu¢ ciently di¤erentiated,

in what came to be known as �the principle of minimum di¤erentiation�, D�Aspermont, Gaszewicz

and Thisse (1979) showed no pure strategy equilibrium existed in the Hotelling framework. Replac-

ing Hotelling�s linear penalty for a �rm�s output not meeting the consumer�s ideal with a quadratic

penalty, they found, in contrast to Hotelling, �rms will maximally di¤erentiate. In an extension

to that result, Irmen and Thisse (1998) showed that, in multi-characteristic spaces, two competing

�rms choose to maximize di¤erentiation in a characteristic of dominant importance to consumers,

and to minimize di¤erentiation in all other characteristics.

In this note we analyze product di¤erentiation in competition between nonpro�t and for-pro�t

�rms. After replicating Irmen and Thisse�s result, we show that when all �rms are nonpro�t, �rms

minimize di¤erentiation both in dominant and dominated dimensions. As a consequence, �rms�

products look alike and split the market equally. We extend the analysis to asymmetric �rms, one

nonpro�t and another for-pro�t. We show that, when at least one �rm is nonpro�t, di¤erentiation

becomes nil in the dominant domain under all parameter values. Our results help explain, for

instance, the competition between nonpro�t and for-pro�t hospitals, where their prices, types and

quality of care they o¤er, or lenght of stay, are extremely similar.1

2 Model

Our model is a two-dimensional variant of the Irmen and Thisse framework. Consumers are con-

tinuously distributed uniformly over a unit square [0; 1]2 in a con�guration commonly known as

a �Hotelling city.�Each point on the square, as de�ned by its location (z1; z2), indicates the pre-

ferred product characteristics of the consumer there located. Two �rms, A and B, produce a good,

with the product characteristics de�ned by the �rms locations, so the characteristics of the good

produced by �rm A are given by the pair a = (a1; a2) and likewise the product from �rm B is

de�ned by b = (b1; b2). Firms are identical except for product location (characteristics). There is a

constant marginal cost of production, which for simplicity is set equal to zero, and is independent

of the product characteristics chosen by the �rm. There are no �xed costs. Every �rm j�s objective

function is

�j�j + (1� �j)Dj where j = fA;Bg

Parameter �j 2 [0; 1] denotes the weight that this �rm assigns to its pro�t, �j , rather than

1Plante (2009) examined di¤erences between the types of patients nonpro�t and for-pro�t hospitals treat and the
length of time it took to treat them. The results indicated no signi�cant di¤erence between the variables used as
indicators of patient type, including Medicare percentage, Medicaid percentage, or case-mix index. Similarly, a 1999
study of 43 hospitals that converted to for-pro�t, for example, found that, on average, there were not statistically
signi�cant di¤erences in prices, the levels of uncompensated care provided or the provision of unpro�table services
like trauma care, burn care and substance abuse treatment; see Becker (2014). Last, forpro�t and nonpro�t hospitals
adopted more similar technologies, as shown by Robinson and Luft (1985).
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on demand Dj .2 When �rms are nonpro�t, �j = 0, they seek to maximize market share. In

contrast, when �rms only care about pro�ts, �j = 1, our objective function coincides with that in

Irmen and Thisse. Our approach allows �rms to be symmetric in the weight they assign to pro�ts,

�A = �B = �, or asymmetric if �A 6= �B.
Consumers buy one unit of the good, either from �rm A or B. If consumer in location (z1; z2)

buys from �rm A, she derives a net utility of

uA (z1; z2) = S � pA � t1(z1 � a1)2 � t2(z2 � a2)2

where S > 0 denotes surplus, which is assumed to be su¢ ciently large to ensure that consumers

buy from one seller or the other, pA is the price she pays for the good, and transportation costs t1
and t2 de�ne how important each characteristic is to consumers. Following Irmen and Thisse, we

assume that characteristic 2 dominates characteristic 1, t2 > t1.3 An analogous expression holds if

the consumer buys from �rm B instead.

The time structure of the game is the following: �rst, �rms simultaneously and independently

choose location; second, �rms select prices; and �nally consumers choose which �rm to buy from.

We solve the model by applying backward induction.

3 Equilibrium analysis

3.1 Third stage

Following Irmen and Thisse (assuming b � a) the demand for �rm A is given by

DA =
pB � pA + t1(b21 � a21) + t2(b22 � a22)� t1(b1 � a1)

2t2(b2 � a2)

and that of �rm B is DB = 1�DA.

3.2 Second stage

Anticipating the above demand functions DA and DB, every �rm j chooses its price pj to solve

max
pj

�j�j + (1� �j)Dj

where pro�ts �j = pjDj since production costs are zero by de�nition. Di¤erentiating with respect

to pj , we obtain �rm A�s best response function

pA(pB) =

(
�A(M1+M2)�1

2�A
+ 1

2pB if pB �
�A(M2�M1)+1

�A

0 otherwise.

2Thompson (1994) provides empirical evidence showing that nonpro�t hospitals in the U.S. compete for market
share.

3With only two characteristics, we are restricting ourselves to what Irmen and Thisse call �strong dominance�.

3



where M1 � t1(b1 � a1)(b1 + a1 � 1) + 1, and M2 � t2(b22 � a22). Hence, pA increases in its rival�s
price, pB, as in standard models on horizontally di¤erentiated products; and its vertical intercept

increases in the weight that �rm A assigns to pro�ts, �A.4 When �rm A assigns a low weight to

pro�ts, the ratio �A(M2�M1)+1
�A

becomes high, entailing that most prices pB lie below
�A(M2�M1)+1

�A
,

ultimately inducing �rm A to respond with a zero price. This setting includes the case in which

�rm A is a non-pro�t, �A = 0, whereby its best response function collapses to pA(pB) = 0 for all

pB. That is, when a �rm is non-pro�t, practicing average cost pricing5 becomes a weakly dominant

strategy, as it is una¤ected by its rival�s price. If, in contrast, �rm A is for-pro�t, �A = 1, its best

response function simpli�es to pA(pB) = M1+M2�1
2 + 1

2pB, which is positive if pB > 1�M1 �M2;

a condition is more likely to hold when the good is more di¤erentiated in the dimension that

consumers regard as dominant.6 A similar, although not symmetric, best response function applies

to �rm B.

Using the best response functions to simultaneously solve for equilibrium prices (p�A; p
�
B) for

�rms A and B in the second stage, we obtain that (1) if both �rms are nonpro�t, �A = �B = 0,

equilibrium prices are p�A = p
�
B = 0; (2) if only �rm A is non-pro�t, �A = 0, equilibrium prices are

p�A = 0 when �A = 0, and

p�B =

(
�B [M1�t2(b2�a2)(b2+a2�2)]�1

2�B
if �B > �B

0 otherwise

where �B � 1
M1�t2(a2�b2)(b2+a2�2) ; (3) if only �rm B is non-pro�t, �B = 0, equilibrium prices are

p�B = 0 when �B = 0, and

p�A =

(
�A(M1+M2)�1

2�A
if �A > �A

0 otherwise

where �A � 1
M1+M2

; and (4) when �A; �B > 0, equilibrium prices become

p�A =

(
�A�B [3+M1+t2(b2�a2)(b2+a2+2)]�2�B

3�A�B
if �A > b�A

0 otherwise

4Since we allow for �A 2 [0; 1], this vertical intercept is only positive if weight �A is high enough, i.e., �A > 1
M1+M2

.
In this setting, price pA is positive for all pB . Otherwise, pA is de�ned by this formula only if pB is su¢ ciently high,
i.e., pB � �A(M2�M1)+1

�A
.

5A nonpro�t �rm constrained to not making losses maximizes sales by setting its price equal to average cost. Since
in our set-up average and marginal costs are zero, the �rm sets its price at zero.

6This result is consistent with Irmen and Thisse. In a context where all �rms are for-pro�t, �A = �B = 1, they
show that di¤erentiation is nil in the dominated dimension, a1 = b1, but maximal in the dominant dimension, b2 = 1
and a2 = 0. Inserting these equilibrium locations, we obtain M2 = t2 and M1 = 1, thus yielding a best response
function of pA(pB) = t2

2
+ 1

2
pB for �rm A; and similarly for �rm B. Simultaneously solving for these two best response

functions, we obtain equilibrium prices of p�A = p
�
B = t2, which coincide with those in Irmen and Thisse.
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and

p�B =

(
�A�B [t2(b2�a2)(4�b2�a2)�M1]��B

3�A�B
if �B > b�B

0 otherwise

where b�A � 2�B
�B [3+M1+t2(b2�a2)(b2+a2+2)]�1 and

b�B � 2�A
�A[3�M1�t2(b2�a2)(b2+a2+2)]�1 .

In words, when both �rms are nonpro�t, both set a price equal to average cost (zero) to

maximize sales while not incurring losses. When only �rm j is nonpro�t, it sets a zero price

while its rival k 6= j sets a monopoly price if its own weight on pro�ts is su¢ ciently high, i.e.,

�k > �k. Otherwise, both �rms practice average cost pricing even if one of the two �rms assigns

a positive (but small) weight on pro�ts, i.e., �k � �k. The monopoly price that �rm k charges

is only positive when products are strongly di¤erentiated; otherwise, the e¤ect of �rm j setting a

zero price for a relatively homogeneous good forces the for-pro�t �rm k to practice average cost

pricing as well.7 This conclusion has important implications for mixed competition. Lakdawalla

and Philipson (2006) argue that for-pro�t �rms cannot compete with nonpro�t providers if there

is su¢ cient nonpro�t preferences among the suppliers of a good, and mixed competition is possible

only when there is �insu¢ cient� nonpro�t goals. Our results suggest that, without substantial

product di¤erentiation, for-pro�t �rms can compete only by acting like their nonpro�t competitors.

Finally, if both �rms are for-pro�t, every �rm j sets a positive price if it assigns a su¢ cient weight

on pro�ts, �j > b�j , and if products are relatively di¤erentiated.
3.3 First stage

Anticipating the equilibrium behavior that ensues in all subsequent stages, every �rm j chooses its

location pair (j1; j2) to solve

max
j1;j2

�j�j(p
�
j ; p

�
k) + (1� �j)Dj(p�j ; p�k)

where both pro�ts and consumer surplus are evaluated at equilibrium prices (p�j ; p
�
k). It is straight-

forward to show that equilibrium locations are a�1 = b
�
1 = 1=2 in the dominated dimension; a result

that holds independently on its own weight on pro�ts, �j , and its rival�s, �k. This result hence

extends Irmen and Thisse�s �nding to contexts in which one or both �rms are nonpro�t.

We next examine optimal locations in the dominant dimension j2. For simplicity, we focus on

three industry settings: (i) both �rms are for-pro�t, �A = �B = 1; (ii) both �rms are non-pro�ts,

�A = �B = 0; and (iii) one �rm is nonpro�t while its rival is for-pro�t, �j = 0 and �k = 1.

1. Two for-pro�ts. Inserting �A = �B = 1 in the above program, its equilibrium prices

7For instance, when �A = 0 and �B > 0, prices p�A and p�B become zero for all values of �B if the product is
undi¤erentiated in both dimensions, a1 = b1 and a2 = b2. A similar argument applies when �B = 0 and �A > 0,
whereby prices p�A and p

�
B are also zero for all values of �A.
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p�A = p
�
B = 0, and using equilibrium location a�1 = b

�
1 = 1=2,

8 �rm A solves

max
a2

�A(p
�
A; p

�
B) =

t2(b2 � a2)(b2 + a2 + 2)2
18

The above program yields best response function a2(b2) = �2
3 +

1
3b2, which is negative for all

admissible values of b2 2 [0; 1]. Hence, �rm A�s best response function collapses to a �at line

a2(b2) = 0 for all b2. Operating similarly for �rm B, we obtain

max
b2

�B(p
�
A; p

�
B) =

t2(b2 � a2)(b2 + a2 � 4)2
18

with best response function b2(a2) = 4
3+

1
3a2, which is positive for all values of a2. Simultane-

ously solving for a2 and b2, and using the constraint that b2; a2 2 [0; 1], we obtain equilibrium
locations a�2 = 0 and b

�
2 = 1. Therefore, when both �rms are for-pro�t �A = �B = 1, product

di¤erentiation in the dominant dimension is maximal; as found by Irmen and Thisse (1998).

2. Two nonpro�t. Following a similar approach as above, �rm A�s program reduces to

max
a2

DA(p
�
A; p

�
B) =

a2 + b2
2

which, di¤erentiating with respect to a2, yields 1=2, i.e., increasing location a2 is a weakly

dominant strategy for �rm A. Similarly, �rm B�s program simpli�es to

max
b2

DB(p
�
A; p

�
B) =

2� a2 � b2
2

After di¤erentiating with respect to b2, we obtain �1=2, i.e., decreasing location b2 is a weakly
dominant strategy for �rm B. Intuitively, �rm A (B) has monotonic incentives to increase

(decrease) its location, which is only compatible with the initial assumption b � a if a2
converges to b2 from below, ultimately entailing a�2 = b

�
2. In words, a continuum of equilibria

emerges in this setting with locations satisfying a�2 = b�2 2 [0; 1]. As a result, �rms do not
di¤erentiate in any dimension.9

3. Only one �rm is nonpro�t. Following a similar approach as in cases 1 and 2, the nonpro�t
�rm A�s program becomes

max
a2

DA(p
�
A; p

�
B) =

(b2 + a2 + 2)

4

8 Inserting a�1 = b�1 = 1=2 in the �rm A�s objective function is equivalent to inserting it after taking �rst-order
conditions with respect to choice variable a2 since a�1 = b�1 = 1=2 is not a function of a2. Otherwise, the optimal
location a�2 would not coincide using the �rst or second approach.

9Among the continuum of equilibria that can be supported in this scenario, social conventions could help select
the equilibrium in which both �rms locate at the center, a�2 = b�2 = 1=2. Regardless of which equilibrium emerges,
all equilibria in this setting yield nil product di¤erentiation, as opposed to those in Irmen and Thisse.
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which, di¤erentiating with respect to a2, yields 1=4, i.e., increasing location a2 is a weakly

dominant strategy for �rm A. In contrast, the for-pro�t �rm B�s program simpli�es to

max
b2

�B(p
�
A; p

�
B) =

t2(b2 � a2)(b2 + a2 � 2)2
8

with best response function b2(a2) = 2
3+

1
3a2. Inserting a

�
2 = 1 into this function, yields b

�
2 = 1

entailing that, when only one of the �rms is nonpro�t, nil product di¤erentiation emerges.10

4 Discussion

D�Aspermont, Gaszewicz and Thisse (1979) identi�ed two countervailing incentives from �rm loca-

tion. First, to maximize market share, �rms want to locate in the center of the demand �eld; and,

second, to create market power and essentially become a local monopoly, �rms seek to be apart.

Irmen and Thisse show, in a setting with multiple dimensions, that the �rst incentive dominates

for pro�t-maximizing �rms, driving them to maximal di¤erentiation in the dominant domain. We

show that the second incentive dominates for nonpro�t, inducing �rms to compete for the center

yielding nil product di¤erentiation. Importantly, this result holds even if only one of the two �rms

is nonpro�t.

Overall, our �ndings suggest that Irmen and Thisse�s minimal di¤erentiation result in the dom-

inated dimension extends to settings in which one or both �rms are nonpro�t. However, their

maximal di¤erentiation outcome in the dominant dimension breaks down if at least one of the

�rms is nonpro�t. As suggested in our discussion of equilibrium prices, the presence of nil dif-

ferentiation induces even for-pro�t �rms to practice average cost pricing under large parameter

conditions. Our results, hence, suggest that the presence of at least one nonpro�t �rms leads to

minimal di¤erentiation in products and services, subsequently strengthening price competition.
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