Growth and Global Imbalances:
The Role of Learning-by-Exporting*

BYOUNG HOON SEOK†

March 23, 2016

Abstract

Rapidly growing developing economies have exported heavily and run current account surpluses. This paper explores whether learning-by-exporting helps explain this macroeconomic behavior of developing countries. It builds up a two-country general equilibrium growth model in which a developing economy benefits from learning-by-exporting as it trades with a developed economy. In the benchmark model, the policies are restricted to non-trade related ones by the World Trade Organization (WTO). The optimal policy for the developing country is then to tax non-traded goods consumption and subsidize savings to increase exports. This policy generates the simultaneous fast growth and current account surpluses observed in the data. However, if there were no WTO restrictions, the developing country would manipulate its terms of trade rather than its current account. This policy improves the welfare of both developing and developed countries, highlighting that terms of trade manipulation can be a "win-win" in the presence of learning-by-exporting.

Keywords: Current Account, Learning-by-Exporting, Terms of Trade
JEL Classifications: E61, F13, F32, O24

* I am deeply indebted to Mark Aguiar for his support and encouragement. I also thank Yan Bai, Mark Bils, Yongsung Chang, Eyal Dvir, William Hawkins, Jay Hong, Ronald Jones, Nobuhiro Kiyotaki, Romi Pavan, Hye Mi You, and seminar participants at the University of Rochester, Ryerson University, Ohio State University, SUNY at Buffalo, KIPF, Ajou University, KISDI, Kyung Hee University, KDI, Korea University, Seoul National University, Sogang University, Ewha Womans University, the 2011 and 2013 Midwest Macro Meetings, the 2011 WEAI Graduate Student Dissertation Workshop and Annual Conference, the Asian Meeting of the Econometric Society 2011, the 19th International Conference on Computing in Economics and Finance, and the Yonsei Global Research Team Workshop for their valuable comments. All errors are mine.

† Department of Economics, The Ohio State University, 410 Arps Hall, 1945 N. High St., Columbus, OH 43210. Email: seok.19@osu.edu
1 Introduction

Rapidly growing developing economies such as China and other Asian countries have exported heavily\(^1\) and run current account surpluses. The fast growth accompanied by current account surpluses contradicts the prediction of the open-economy neoclassical growth model that countries with faster productivity growth should receive more net capital inflows to fund investment and smooth consumption. Gourinchas and Jeanne (2012) name this inconsistency the "allocation puzzle." These fast growing countries’ current account surpluses contribute to the worldwide current account imbalances, or so-called "global imbalances."\(^2\)

Since these economies have exported heavily, a popular view is that export-led growth may be behind some of these dramatic growth phenomena. This is supported by empirical studies which suggest that "learning-by-exporting" (exporters’ productivity improvement accompanied by increased exports) may be quantitatively large in developing countries. This paper takes the popular view seriously and explores whether learning-by-exporting helps explain the key macroeconomic behavior of fast-growing developing countries. This paper also examines which policies exploit learning-by-exporting, their implications for aggregates like the current account and the real exchange rate, the welfare consequences for the growing economy and the rest of the world, and whether restricting the set of policies to non-trade related policies matters.

In order to answer these questions, this paper builds up a two-country general equilibrium growth model in which a developing economy benefits from learning-by-exporting as it trades with a developed economy. This positive externality in the developing country’s

\(^1\)Figure 1 shows that since 1991, China’s export has grown persistently. The average export to GDP ratio in China from 1991 to 2007 is 25.22%. Over the same period, the average growth rate of China’s real GDP per capita is 9.57%.

\(^2\)As shown in Figure 2, China has run a current account surplus since the early 1990s, while the U.S. has run a persistent current account deficit. This current account imbalance between the U.S. and China contribute to global imbalances.
export provides it with an incentive to increase exportation. The model is calibrated to match relevant data moments of the U.S. and China in 1991 and is simulated for transition to steady state. I consider a setup in which policies are restricted by the World Trade Organization (WTO) to non-trade related policies as the benchmark.³ In this benchmark model, the optimal policy for the developing country is to tax non-traded goods consumption and subsidize savings, which shifts labor into the tradable sector and suppresses consumption to increase exports.⁴ These policies generate the simultaneous fast growth and current account surpluses observed in the data. These policies improve the welfare of the developing country relative to a competitive equilibrium without any policies because the developing economy benefits from rapid growth due to learning-by-exporting. However, the welfare change of the developed country between the benchmark case and the no policy economy is quantitatively negligible.

If there were no WTO restrictions, the developing country would have an incentive to manipulate its terms of trade rather than distort savings. Specifically, the developing country subsidizes exports to reduce its consumption of the export good and increase consumption of the import good. This policy generates a large deterioration in the developing economy’s terms of trade, counter to the standard optimal tariff idea in which countries want to raise their terms of trade. The policy also reverses the prediction for its current account. In

³Since the WTO is designed to liberalize international trade, it forces countries to decrease tariffs and export subsidies. Therefore, the WTO prevents countries from manipulating their terms of trade. The WTO restrictions in this model represent the general state of trade rules that prevent countries from manipulating terms of trade. For instance, a country may not be able to manipulate its terms of trade if its trading partner can implement trade policies in retaliation.

⁴This response is consistent with current Chinese government policies. The Chinese government is taxing the gross revenue in the service sector (Business Tax), but in the manufacturing sector, they are taxing the difference between a commodity’s price and its production cost (Value Added Tax). Ping, Liang, Hao, Zhang, and Mao (2009) show that if the tax rate of the Business Tax is converted to a Value Added Tax, it is 18.2%. This is greater than the Value Added Tax rate of 17% that is applied to manufacturing. Therefore, the Chinese government is taxing the service sector heavier than the manufacturing sector, thus the policy of applying a non-traded good’s consumption tax is consistent with China’s tax regime. The optimal policy of providing a savings subsidy is also consistent with China’s policy of stockpiling a large amount of government savings, which was 4.4% of GDP in 1992 and 10.8% in 2007, according to Ma and Yi (2010).
particular, the developing economy now runs a current account deficit, as it no longer relies heavily on the savings distortion to promote exports. This policy raises the welfare of both countries relative to the benchmark model, as it generates faster economic growth in the developing economy and improvement of the terms of trade in the developed economy.\(^5\) This highlights the fact that terms of trade manipulation can be a "win-win" in the presence of a positive externality in developing countries from learning-by-exporting, which contrasts with Bagwell and Staiger (1999)'s view that the WTO improves world welfare by preventing zero-sum terms of trade manipulation.

This paper also considers a "coordinated policy" problem to obtain the first-best outcome for the world. If both developing and developed countries coordinate policies to achieve the world’s best allocation, both countries’ welfare rises significantly compared with the benchmark economy. In this setup, the developing country’s terms of trade deteriorate even further, and it runs a greater current account deficit relative to the "no-WTO restrictions" case. This large deterioration of the developing country’s terms of trade reduces welfare of the developing country and increases that of the developed country, compared with the "no-WTO restrictions" case. However, the welfare changes of both countries between the "coordinated policy" case and the "no-WTO restrictions" economy are quantitatively small. This result implies that we can obtain almost the same results as the first-best outcome for the world by allowing developing countries to subsidize their exporters.

This paper is motivated by two distinct lines of study. The first consists of empirical micro studies that find large estimates of learning-by-exporting in developing countries.\(^6\) A possible explanation is that exporters in developing countries improve their productivity through imitation and technology spillover from developed countries.\(^7\) The most challenging task of

\(^5\)This result suggests that if the U.S. allows China to subsidize its exporters, then the current account imbalances between the U.S. and China will decrease and the welfare of both countries will increase.

\(^7\)Empirical micro studies point out that learning-by-exporting also comes from exporters’ improved access
these studies is to control for the effects of the unobserved differences in firm characteristics between exporters and non-exporters. In order to control for this selection bias, Van Biesebroeck (2005) uses ethnicity of the owner and state ownership as instruments, De Loecker (2007) uses matched sampling techniques based on an underlying model of self-selection into export markets, and Park, Yang, Shi, and Jiang (2010) use exogenous firm-specific exchange rate shocks as instruments. These studies find significant evidence of learning-by-exporting after controlling for this selection bias. Another issue regarding learning-by-exporting is to determine if it can be distinguished from learning-by-doing. A wide range of studies (for instance, Blalock and Gertler (2004), Van Biesebroeck (2005), De Loecker (2007), and De Loecker (2013)) show that there is a jump in firms’ productivity accompanied by the initiation of exporting, which cannot be explained by learning-by-doing. One might also think that learning-by-importing is as important as learning-by-exporting. According to Keller (2004), however, there has been little empirical support for learning-by-importing.

The second literature focuses on either global imbalances or the allocation puzzle and attempts to develop mechanisms to explain the observed data patterns. Suggested explanations regarding global imbalances include the lack of financial assets in developing countries (Caballero, Farhi, and Gourinchas (2008); Mendoza, Quadrini, and Rios-Rull (2009)) and weakened precautionary savings motive in the U.S. caused by the "great moderation" (Fogli and Perri (2006)). Studies on the allocation puzzle provided consumption habits (Carroll, Overland, and Weil (2000)), financial frictions faced by private firms in China (Song, Storesletten, and Zilibotti (2011)), limited commitment and political economy distortions (Aguiar and Amador (2011)), and a flatter cross-sectional age-income profile accompanied by fast growth (Guo and Perri (2013); Song and Yang (2010)) as potential explanations. However, this literature focuses on net trade (typically in one-good models) and is silent on comparative advantage. My paper not only provides a new explanation regarding these puzzling data patterns but also analyzes the connection between growth, current account
to advanced production technologies, technical assistance from foreign buyers, competition with foreign firms and higher quality standards in international markets relative to domestic markets.
surplus, and WTO restrictions in the comparative advantage framework. Furthermore, it explores the optimal polices in the presence of learning-by-exporting and welfare consequences for developing and developed countries, both of which have not been addressed by previous studies.

The remainder of the paper is organized as follows. Section 2 presents the model; section 3 describes the calibration of the model; section 4 discusses the results; section 5 explains a "coordinated policy" problem and its results; section 6 provides the welfare analysis; section 7 does a sensitivity analysis on the degree of learning-by-exporting; and section 8 concludes my findings.

2 Model

I present a two-country general equilibrium growth model. Time \(t \) is discrete and runs from 0 to infinity. The North country, denoted by \(N \), corresponds to a developed economy and owns the most developed technology. This model abstracts from physical capital to focus on savings side. The North’s human capital stock \(H^N \) is assumed to be constant, reflecting that the North has fully exhausted productivity gains from learning-by-exporting. The South country, denoted by \(S \), representing a developing economy, has an inferior technology \(H^S_0 \leq H^N \). Given the assumption that \(H^N \) is constant, only the South country grows through learning-by-exporting as it trades with the North country. Each country produces one non-traded commodity and both countries share two traded goods \((z \in \{1, 2\})\). There is also an international financial market that buys and sells risk-free bonds \(b^t_i \) with a return denoted by \(1 + r_t \). Each economy is populated by firms that produce goods and workers

8 Using aggregate data, Gourinchas and Jeanne (2012) show that the savings wedge is the key in explaining developing countries’ fast growth accompanied by current account surpluses. Motivated by their result, this paper builds up the most parsimonious model for savings side. Rapidly growing developing countries, which run current account surpluses, tend to undergo a lot of investment but save even more. The saving side is particularly puzzling given the fast growth. We have models of why there may be capital wedges (enforcement, for example), but few regarding savings wedges. Including capital in the model will affect the quantitative results, but the key mechanism still stands that absent the ability to manipulate the terms of trade, learning-by-exporting calls for a savings wedge.
who provide domestic firms with labor. Lastly, the South country has a government that implements policies to take advantage of learning-by-exporting.

2.1 Firms

Country $i \in \{N, S\}$ firms in the trade goods sector use labor $n_i^z(t)$ to produce output $y_i^z(t)$ according to a constant returns to scale production function

$$y_i^z(t) = A_i^z(t) n_i^z(t), \ i \in \{N, S\}, \ z \in \{1, 2\},$$

where

$$A_i^z(1) \equiv H_i^z, \ A_i^z(2) \equiv (H_i^z)^{1+\phi}, \ \phi > 0.$$

Labor productivity in the trade goods sector depends on each country’s human capital. Since ϕ is greater than zero, the second traded commodity’s production is more human capital intensive than the first traded commodity’s. The South country has a comparative advantage in the first traded commodity’s production because it has less human capital $H_S^z < H_N^z$:

$$\frac{A_S^z(2)}{A_S^z(1)} = \frac{(H_S^z)^{1+\phi}}{H_S^z} < \frac{A_N^z(2)}{A_N^z(1)} = \frac{(H_N^z)^{1+\phi}}{H_N^z}.$$

Therefore, the South country exports the first traded commodity. Labor is hired by the firms in a competitive domestic labor market that clears at an equilibrium wage w_i^t. Firms in the traded goods sector maximize their profit

$$p_t(z) A_i^z(t) n_i^z(t) - w_i^t n_i^z(t).$$

Since I assume a perfect competition in the traded goods sector, the law of one price holds. Thus, the world price of traded commodity z is

$$p_t(z) \leq \frac{w_i^t}{A_i^z(t)}.$$

Since the South country produces the first traded commodity and the North produces the second traded commodity, the South’s domestic wage is

$$w_i^S = \left(\frac{p_t(1)}{p_t(2)} \right) \cdot \left(\frac{A_S^z(1)}{A_N^z(2)} \right).$$

7
A firm in the non-traded goods sector uses labor n^i_t to produce output y^i_t according to a constant returns to scale production function

$$y^i_t = n^i_t, \ i \in \{N, S\}.$$

I assume that labor productivity in the non-traded goods sector is equal to one in both countries because the focus is on productivity improvement in the traded goods sector.\footnote{Even if I allow the productivity in the non-traded commodity sector to differ across these two countries, all the qualitative results carry through. If the North labor productivity in non-traded goods sector is greater than that of the South, the North produces and consumes more non-traded goods than before, and all other allocations do not change.} The non-traded goods sector firm maximizes its profit

$$p^i_t n^i_t - w^i_t n^i_t.$$

Therefore, each country’s non-traded commodity price is

$$p^N_t = w^N_t = 1 \quad \text{and} \quad p^S_t = w^S_t.$$

The North’s non-traded commodity/ labor is the numeraire.

2.2 Domestic Workers

A representative worker supplies labor N^i inelastically for domestic firms in both non-traded and traded goods sectors, and can trade a risk-free bond b^i_t from the international financial market. The worker enjoys utility flows from consumption of the non-traded commodity c^i_t and two traded goods $c^i_t(z), \ z \in \{1, 2\}.$ The worker discounts the future utility with a discount factor $\beta \in (0, 1)$ and has preferences:

$$\sum_{t=0}^{\infty} \beta^t u(C^i_t),$$

where

$$u(C^i_t) \equiv \frac{(C^i_t)^{1-\gamma} - 1}{1 - \gamma};$$

$$C^i_t \equiv (c^i_t)^{1-\psi} \cdot c^i_t(1)^{\psi} \cdot c^i_t(2)^{(1-\eta)\psi}; \ \eta \in (0, 1), \ \psi \in (0, 1).$$
Note that Cobb-Douglas preferences feature a unit elasticity of substitution across the non-traded commodity and two traded goods. With this form of utility function, the expenditure share on traded goods is ψ. Within traded goods, the proportions of the first and second traded commodity are η and $1 - \eta$, respectively. The South country’s real exchange rate is

$$e_t^S \equiv \frac{P_t^S}{P_t^N} = \left(\frac{p_t^S}{p_t^N} \right)^{1-\psi} = \left(\frac{w_t^S}{w_t^N} \right)^{1-\psi} = \left\{ \left(\frac{p_t(1)}{p_t(2)} \right) \cdot \left(\frac{A_t^S (1)}{A_t^N (2)} \right) \right\}^{1-\psi},$$

where

$$P_t^i \equiv \left(\frac{p_t^i}{1-\psi} \right)^{1-\psi} \left(\frac{p_t(1)}{\eta^\psi} \right)^{\eta^\psi} \left(\frac{p_t(2)}{(1-\eta)^\psi} \right)^{(1-\eta)^\psi}, \ i \in \{N, S\}.$$

Since the law of one price holds in the traded goods sector, the South country’s real exchange rate is defined by the ratio of each country’s non-traded commodity price.

I assume that the North does not levy taxes, so the representative worker in the North country maximizes utility subject to a budget constraint:

$$c_t^N + p_t(1)c_t^N (1) + p_t(2)c_t^N (2) + b_{t+1}^N = N_t^N + (1 + r_t) b_t^N.$$

However, the representative worker in the South country maximizes utility subject to a budget constraint:

$$(1 + \tau_t^{NT}) p_t^S c_t^S + (1 + \tau_t^{EX}) p_t(1)c_t^S (1) + p_t(2)c_t^S (2) + b_{t+1}^S + T_t = w_t^S N_t^S + \{1 + (1 + r_t) r_t \} b_t^S.$$

The South government can tax or subsidize non-traded commodity consumption (τ_t^{NT}), exporting commodity consumption (τ_t^{EX}), and/or domestic savings (τ_t^r). In addition, the government can use a lump-sum tax or transfer (T_t). Without loss of generality, I normalize taxes on imports to zero.10

For the benchmark, I consider a setup in which the policies are restricted by the WTO to non-trade related policies. Thus, in the benchmark model, I assume $\tau_t^{EX} = 0$. This

10I am primarily interested in the long run trend of the past 20 years. Since monetary policy is neutral in the long run, I focus on fiscal policies.

11Without loss of generality, the South government taxes only consumers. The government can use the full set of taxes, and this is not the only way to decentralize the system. Assume that the South workers do not have access to the international financial market and its government trades a risk-free bond b_t^i on behalf of workers. The model implications for key macroeconomic variables do not change.
means that the South government cannot directly subsidize exports or manipulate its terms of trade \(\left(\frac{p_t(1)}{p_t(2)} \right) \). Then, I will compare the results of the benchmark model to those of a "no-policy" competitive equilibrium \((\tau_T^N = \tau_T^{EX} = \tau_T^r = T_t = 0) \) and the "no-WTO restrictions" case in which the South government can tax or subsidize exporting commodity consumption \((\tau_T^{EX} \neq 0) \).

2.3 Law of Motion for South Human Capital

I assume the North has exhausted learning-by-exporting, so only the South country grows through learning-by-exporting as it trades with the North country. Two common findings in empirical micro studies on learning-by-exporting are that an exporter’s productivity improves as their value of exports grows, and this export-productivity relationship becomes stronger as firms export to relatively more developed countries. On the basis of these evidences, I model the degree of learning-by-exporting as an increasing function of both the South value of exports and the difference in human capital stocks between North and South. Thus, the law of motion for South human capital is

\[
H_{t+1}^S = H_t^S + \left(\kappa H_t^N - H_t^S \right) \left\{ 1 - \exp \left(-\frac{EX_t^S}{\alpha} \right) \right\}, \quad (1)
\]

where

\[
EX_t^S = \max \left\{ (y_t^S(1) - c_t^S(1)), 0 \right\}.
\]

The South’s human capital can grow up to \(\kappa H_t^N \), where \(\kappa \in (0, 1) \), through learning-by-exporting.\(^{13}\) The difference between North and South human capital stocks is then represented by \((\kappa H_t^N - H_t^S) \).\(^{14}\) The value of South exports \((EX_t^S) \) is the first traded commodity

\(^{12}\)If \(\kappa \) is equal to one, the comparative advantage disappears at the steady state \((H_t^S = \kappa H_t^N) \). Therefore, the steady state is indeterminant.

\(^{13}\)The functional form that I use for the law of motion for South human capital does not allow the South human capital \((H_t^S) \) to converge to \(\kappa H_t^N \) in finite periods. Therefore, I consider that this model economy arrives at the steady state when the South human capital \((H_t^S) \) reaches 99% of \(\kappa H_t^N \).

\(^{14}\)Note that the South’s learning-by-exporting depends on the difference in human capital stocks between North and South. If the North human capital grows over time, the South’s productivity gains from learning-
exports. If there is productivity improvement from the second traded commodity exports, the South country exports both traded goods in the steady state. In order to exclude this extreme case, the degree of learning-by-exporting from the second traded commodity exports is set at zero. The parameter $\alpha > 0$ governs the degree of learning-by-exporting, which is a decreasing function of α.

2.4 Competitive Equilibrium

A competitive equilibrium consists of a set of quantities $\{c^i_t, c^i(z), b^i, H^S_t\}$, a set of prices $\{p^i_t, p_t(z), w^i, r_t\}$, and a set of taxes $\{\tau^N_t, \tau^E_t, \tau^r_t, T_t\}$, where $i \in \{N, S\}$ and $z \in \{1, 2\}$, such that:

1. given prices and taxes, workers maximize utilities

2. given prices, firms maximize profits

3. the South human capital evolves according to the law of motion stated in equation (1)

4. the South government budget constraint is satisfied:

$$\tau^N_t p^S_i c^S_i + \tau^E_t p_t(1)c^S_t(1) + T_t = \tau^r_t r_t b^S_t$$

5. goods markets clear:

$$c^i_t = y^i_t, \quad i \in \{N, S\};$$

$$c^N_t(z) + c^S_t(z) = y^N_t(z) + y^S_t(z), \quad z \in \{1, 2\}$$

6. labor markets clear:

$$n^i_t + n^i_t(1) + n^i_t(2) = N^i_t, \quad i \in \{N, S\}$$

7. bond market clears:

$$b^S_t + b^N_t = 0.$$
2.5 Ramsey Problem

The South government recognizes the law of motion for its human capital and implements policies in order to take advantage of learning-by-exporting.16 The South government’s problems in the benchmark model and the "no-WTO restrictions" case are the Ramsey problem of choosing a competitive equilibrium to maximize the South worker’s utility, given H_0^S and b_0^S. Following the primal approach to the Ramsey problem (Jones, Manuelli, and Rossi (1997)), I formulate the South government’s problems as if the government chooses an allocation, subject to constraints, that ensure the existence of prices and taxes such that the selected allocation is consistent with the optimizing behavior of workers and firms.

2.5.1 Benchmark

The allocation selected by the South government has to satisfy the law of motion for South human capital, both countries’ domestic labor markets clearing conditions, and all goods markets clearing conditions. In addition to these standard constraints, the allocation should also satisfy: (i) the North worker’s optimality conditions and present-value budget constraint, (ii) the optimality conditions of the North firms, and (iii) WTO restrictions.

The North representative worker solves:

$$\max_{t=0}^{\infty} \beta^t u(C_t^N),$$

subject to

$$\sum_{t=0}^{\infty} \left(\prod_{i=0}^{t} \frac{1}{1 + r_i} \right) \cdot \left(c_t^N + p_t(1) \cdot c_t^N(1) + p_t(2) \cdot c_t^N(2) - N_t^N \right) = b_0^N.$$

Therefore, the North worker’s optimality conditions are:

$$\frac{\beta u_{c_{t+1}^N}}{u_{c_t^N}} = \frac{1}{1 + r_{t+1}};$$

$$\frac{u_{c_{t}^N(z)}}{u_{c_{t}^N}} = p_t(z), \quad z \in \{1, 2\},$$

16Note that firms do not internalize learning-by-exporting in this model. If firms recognize learning-by-exporting, the only thing firms can do to take advantage of learning-by-exporting is dumping. However, firms cannot use dumping because of the WTO restrictions. Therefore, a government’s macroeconomic policy is essential to get the full benefit from learning-by-exporting.
where \(u_{c_t}^N(z) \) is the North worker’s marginal utility of consumption for the traded commodity \(z \in \{1, 2\} \), and \(u_{c_t}^N \) is the North worker’s marginal utility of consumption for its non-traded commodity.

Note that the North worker’s optimality conditions and present-value budget constraint are summarized as the following implementability condition:

\[
\sum_{t=0}^{\infty} \beta^t \left(u_{c_t}^N \cdot c_t^N + u_{c_t}^N(1) \cdot c_t^N(1) + u_{c_t}^N(2) \cdot c_t^N(2) - u_{c_t}^N \cdot N_t^N \right) = u_{c_0}^N \cdot b_0^N. \quad \text{(17)}
\]

This implies that any competitive equilibrium must satisfy the North implementability condition, and any allocation that satisfies this condition and goods market clearing conditions can be decentralized as a competitive equilibrium.

The optimality conditions of the North firms are summarized as follows:

\[
\text{if } p_t(z) = \frac{u_{c_t}^N(z)}{u_{c_t}^N} < \frac{1}{A_t^N(z)}, \quad n_t^N(z) = 0;
\]

\[
\text{if } p_t(z) = \frac{u_{c_t}^N(z)}{u_{c_t}^N} = \frac{1}{A_t^N(z)}, \quad n_t^N(z) > 0, \quad z \in \{1, 2\}.
\]

The firms in the North’s traded goods sector do not produce the traded commodity \(z \) if its world price \(p_t(z) \) is less than the firms’ unit labor cost \(\frac{1}{A_t^N(z)} \).

The WTO restrictions are represented by

\[
\frac{u_{c_t}^S(1)}{u_{c_t}^S(2)} = \frac{u_{c_t}^N(1)}{u_{c_t}^N(2)}.
\]

Since the South government cannot directly subsidize exports or manipulate terms of trade in the benchmark model, the South’s domestic relative price of the export good to import good \(\left(\frac{p_t^S(1)}{p_t^S(2)} \right) \) is equal to the world price.

Therefore, the South government’s problem in the benchmark model\(^{18}\) is formulated as follows: the South government solves

\[
\max \sum_{t=0}^{\infty} \beta^t u(C_t^S),
\]

\(^{17}\)See the appendix for the derivation of the implementability condition.

\(^{18}\)See the appendix for the computation algorithm used to solve the benchmark model.
subject to

\[H_{t+1}^S = H_t^S + (\kappa H_t^N - H_t^S) \left\{ 1 - \exp \left(-\frac{E X_t^S}{\alpha} \right) \right\}; \]

\[N^i = n_t^i + n_t^i(1) + n_t^i(2); \quad c_t^i = n_t^i; \; i \in \{N, S\}; \]

\[c_t^N(z) + c_t^S(z) = A_t^N(z) n_t^N(z) + A_t^S(z) n_t^S(z); \]

\[\frac{u_{c_t^N(z)}}{u_{c_t^N}} \leq \frac{1}{A_t^N(z)}; \quad n_t^N(z) \geq 0; \quad n_t^S(z) \geq 0, \; z \in \{1, 2\}; \]

\[\sum_{t=0}^{\infty} \beta^t \left(u_{c_t^N(1)} \cdot c_t^N + u_{c_t^N(2)} \cdot c_t^N(1) + u_{c_t^N(2)} \cdot c_t^N(2) - u_{c_t^N} \cdot N^N \right) = u_{c_0^N} \cdot b_0^N; \]

\[\frac{u_{c_t^N(1)}}{u_{c_t^N(2)}} = \frac{u_{c_t^N(1)}}{u_{c_t^N(2)}}. \]

2.5.2 No WTO Restrictions

If there were no WTO restrictions, the allocation chosen by the South government has to satisfy all constraints of the benchmark model above except the last equation \(\left(\frac{u_{c_t^N(1)}}{u_{c_t^N(2)}} = \frac{u_{c_t^N(1)}}{u_{c_t^N(2)}} \right) \).

Therefore, the "no-WTO restrictions" problem drops the last constraint which implies the South government can manipulate terms of trade. Consequentially, the South's domestic relative price of the export good to import good \(\left(\frac{p_t^N(1)}{p_t(2)} \right) \) can be different from the world price.

3 Calibration

This section explains how I set parameter values of the benchmark model economy. I interpret the North country as the U.S. and the South country as China. A set of parameters are adopted from related literature and the U.S. data. The model period is one year. The discount factor \(\beta \) is set at 0.96, which implies 4% real interest rate per annum at the steady state, and the preference parameter \(\gamma \), which determines the intertemporal elasticity of substitution, is set at 2. The expenditure share on traded goods \(\psi \) is 0.2438, which is the average
U.S. GDP share of traded goods sector19 from 1991 to 200720 and the parameter η is set at 0.551621 so that the expenditure share on the first traded commodity ($\eta\psi$) matches the average U.S. imports to GDP ratio from 1991 to 2007 (0.1345)22. The parameter κ, which determines the South’s human capital at the steady state, is 0.99 in order to prevent multiple solutions.23 Both the North (N^N) and the South’s (N^S) labor is normalized to 1, and the South’s initial debt (b^S_0) is set at 0.

The remaining parameters are chosen so that the model can replicate relevant data moments of the U.S. and China. The South’s initial human capital H^S_0, the North’s human capital H^N, and the parameter ϕ, which governs the labor productivity in the second traded commodity’s production, are selected so that the model matches three targets: (i) China’s labor productivity of its manufacturing industry relative to its service industry in 1991 (0.5269)24; (ii) the U.S. labor productivity of its manufacturing industry relative to China’s in 1991 (44.1379)25; and (iii) the U.S. relative labor productivity of its exporters in 1992 (1.169) calculated by Bernard and Jensen (1999). The parameter α, which governs the degree of learning-by-exporting, is chosen so that the model matches the average growth rate of China’s real GDP per capita relative to the U.S. from 1991 to 2007 (0.0752)26. The degree of learning-by-exporting under this calibration implies that if the South country’s exports increase by 10\%, its productivity rises by 11.91\%. This is in line with micro estimates for

19Following Stockman and Tesar (1995), the traded goods sector includes agricultural, manufacturing, mining, retail, and transportation sectors.

20Data Source: BEA.

21This is a lower bound of the first traded commodity’s expenditure share in traded goods consumption, because I assume that the U.S. does not produce imported goods. A sensitivity analysis found that the main results are robust to the value of parameter η.

22Data Source: World Development Indicators.

23If κ is equal to one, the comparative advantage disappears at the steady state ($H^S_t = \kappa H^N$), leading to multiple solutions. The parameter κ determines the South’s human capital at the steady state. If we reduce the value of κ, the South’s steady state human capital decreases and the growth rate of its human capital declines because of the reduced difference between the maximum benefit to human capital the South can receive by exporting to the more productive North and its current human capital. All the qualitative results are still valid.

24Data Source: World Development Indicators and Banister (2005).

25Data Source: BEA, World Development Indicators, and Banister (2005).

26Data Source: Penn World Table.
China.\footnote{For instance, Park, Yang, Shi, and Jiang (2010) show that if a Chinese firm experiences an exogenous 10\% increase in exports, its productivity rises by 11\% to 13\% in China.} I use the same specification for the "no-policy" and "no-WTO restrictions" cases. The parameter values are summarized in Table 1.

4 Results

This section explains the quantitative results and is organized as follows: Subsection 4.1 explains the results of the benchmark model and compares them to the observed data patterns; Subsections 4.2 and 4.3 present the results of the "no-policy" economy and the "no-WTO restrictions" case in comparison with those of the benchmark, respectively.

4.1 Benchmark

The period 0 corresponds to the year 1991. When the South government cannot use an export subsidy ($\tau_t^{EX} = 0$) due to WTO restrictions, the optimal policy for the South country is to tax the non-traded good’s consumption and subsidize savings as shown in Figure 3. This shifts labor into the tradable sector and suppresses the South’s overall consumption to increase its exports. Figure 4 shows that the South government initially shifts labor into the tradable sector by suppressing consumption of the non-traded commodity. As the South’s human capital grows through learning-by-exporting, it gradually raises its labor allocation to the non-traded commodity sector and therefore its consumption. Figure 5 shows that the South government suppresses consumption of the export good (Traded Commodity 1) while reducing that of the import good (Traded Commodity 2) for the initial periods. This raises the South’s exports, leading its human capital and real GDP to grow rapidly through learning-by-exporting as shown in Figures 4 and 6. The transition to the steady state takes 112 periods, during which the North produces both traded goods and the South produces the first traded commodity.\footnote{As I describe in Subsections 4.2, 4.3 and 5.2, the South produces the second traded commodity during the latter part of the transition in the "No Policy", "No-WTO Restrictions", and "Coordinated Policy" cases. This is because initially the South runs a substantial current account deficit. In order to repay the...}
The initial pattern of exports and imports of the South causes the country to run a current account surplus, accompanied by rapid growth in its real GDP as shown in Figure 6. This result shows that the gains from distorting savings to encourage exports are even larger than the incentive to smooth consumption. During the transitional phase, the South’s terms of trade stay constant. Note that when one country produces both traded goods, the terms of trade are determined by its productivity ratio between the two traded goods’ production. Since the North produces both traded goods for all periods, the South’s terms of trade are equal to the North’s productivity ratio between two traded goods \(\left(\frac{p_t(1)}{p_t(2)} = \frac{(H^N)^{1+\delta}}{H^N} \right) \). This is equal to the U.S. relative labor productivity of exporters in 1992 (1.169). The constant South’s terms of trade makes the South’s real exchange rate appreciate as its human capital grows. This is because the South’s real exchange rate is a function of its terms of trade and relative productivity in the traded commodity’s production

\[
\left[\frac{p_t(1)}{p_t(2)} \cdot \left(\frac{A_S(1)}{A_N(2)} \right) \right]^{1-\psi}.
\]

Simultaneous growth and real exchange rate appreciation is consistent with the Balassa (1964)-Samuelson (1964) hypothesis.

Table 2 summarizes the average values of key aggregates of U.S. and China from 1991 to 2007 and their counterparts in the benchmark model. The model is calibrated to match the average growth rate of China’s real GDP per capita relative to the U.S. (7.52%). As shown in Table 2, the South’s policies generate the simultaneous fast growth and current account surpluses observed in the data. In addition, the benchmark model replicates both China’s interest on its debt, the South shifts more workers from non-tradable sector to both tradable sectors so that it runs a trade surplus for the rest of the transition periods.

29 As can be seen in Figure 2, China’s current account surplus has increased over time. However, in this model, the South’s current account surplus is decreasing over time. The Chinese government could have gradually implemented policies to take advantage of learning-by-exporting. However, since this is a perfect foresight model, the South does not gradually implement policies. In order to match the trend, I should introduce some frictions like adjustment costs into this model.

30 Balassa (1964) and Samuelson (1964) argue that economic growth driven by productivity gains in the traded goods sector should accompany a real exchange rate appreciation.

31 This model overstates China’s current account surplus and understates the U.S. current account deficit. However, what is important is that the model can qualitatively replicate the sign of current accounts of both countries. In reality, both countries have other trading partners than each other. The discrepancy between current account generated by the model and its data counterpart may come from each country’s trade with
export over GDP and the appreciation of its real exchange rate as in the data.

4.2 No Policy Counterfactual

In the "no-policy" economy, both firms and workers know that the South’s human capital will grow over time but no one recognizes its law of motion. Therefore, the South government has no incentive to raise the South’s exports in order to take advantage of learning-by-exporting. If no policies were implemented in both the North and South countries, the transition to the steady state takes 118 periods as shown in Figure 7. This is 6 periods longer than that of the benchmark economy because no one implements policies to accelerate the South’s growth through learning-by-exporting in the "no-policy" economy. During the transition, the patterns of specialization in production undergo three stages: (i) the North produces both traded goods and the South produces the first traded commodity for the first 96 periods; (ii) both countries are completely specialized in period 97; and (iii) the South starts to produce the second traded commodity, in addition to the first traded commodity, in period 98.

Figure 7 shows that more South workers produce in the non-traded commodity sector for the initial 85 periods relative to the benchmark case, because the South’s labor productivity in the first traded commodity’s production is much less than that in the non-traded commodity’s production over the same periods. This initially suppresses the South’s first traded commodity’s exports although its consumption for the first traded commodity is less than in the benchmark economy as shown in Figure 8, delaying the take-off of its human capital relative to the benchmark case.

Since the South workers know that their income will grow in the future, they want to raise current consumption. The South consumes more non-traded goods in the first 85 periods than in the benchmark economy, leading to a larger aggregate consumption. This makes the South’s current account deficit\(^\text{32}\) increase for the same periods. The South workers move from the non-tradable sector to both tradable sectors for the rest of the transition periods.

\(^{32}\)The size of the current account deficits is implausible. This is caused by the full commitment and perfect foresight assumptions.
so that the South runs a trade surplus in order to repay the interest on its debt. Since more workers produce in both traded commodity sectors in the South country relative to the benchmark economy beginning in period 86, the level of South real GDP becomes greater than that in the benchmark case as Figure 9 presents. This is because labor productivity in the traded goods production is higher than that in non-traded commodity production over the same period. Figure 9 shows that the South terms of trade start to deteriorate in period 97 when both countries are completely specialized. Beginning in period 98 when the South produces both traded goods, its terms of trade, which are equal to the South productivity ratio \(\left(\frac{H_S^t}{H_N^t} \right)^{1+\phi} \), improve as its human capital grows. For the same period, the real exchange rate appreciates following the South’s human capital growth.

4.3 No WTO Restrictions

If there were no WTO restrictions \(\tau_i^{EX} \neq 0 \), the South country can directly subsidize exports. Figure 10 shows that the transition to the steady state takes 71 periods but most of the catch-up takes place in the first 50 periods. During transition, the North produces both traded goods and the South produces the first traded commodity for the first 26 periods. As the South’s human capital grows, it gradually expands the world market share of the first traded commodity. In period 27, the South completely takes over the market for the first traded commodity, which leads to complete specialization of both countries until period 35. The South starts to produce the second traded commodity in period 36.

As shown in the left panel of Figure 11, the South government suppresses consumption of the export good (Traded Commodity 1) to a larger degree during the transition relative to benchmark outcomes. This raises the South’s exports, making its human capital grow at an even faster rate through learning-by-exporting relative to the benchmark economy. Figure 10 shows that, compared to the benchmark, the South government shifts more workers from the non-traded commodity sector to both traded goods sectors. Since labor productivity in both

33 The right panel of Figure 8 shows that the South exports even the second traded commodity from period 100 despite a comparative disadvantage.

34 The South terms of trade in the benchmark model is normalized to 1 in Figures 9, 12, and 16.
traded goods' production is higher than that in the non-traded commodity's production, the level of South real GDP in "no-WTO restrictions" case is greater than that in the benchmark economy beginning in period 11. The right panel of Figure 11 shows that the South substitutes the alternative imports by raising consumption of the import good (Traded Commodity 2) substantially for the initial periods. As the South accumulates human capital through learning-by-exporting, its imports decline to a level which is even below that in the benchmark after period 36—when the South starts to produce the second traded commodity.

The South's increased imports initially cause the country to run a large current account deficit. As the South's imports decline, the current account deficit also goes down and ultimately becomes balanced in the steady state. The South government's export subsidy generates a deterioration in its terms of trade \(\left(\frac{p_{t}^{(1)}}{p_{t}^{(2)}} \right) \) beginning in period 27 when both countries start to be completely specialized, as shown in the lower panel of Figure 12. When the North produces both traded goods for the initial 26 periods, the South's terms of trade are equal to the North's productivity ratio between two traded goods \(\left(\frac{H^{N}}{H^{N}} \right)^{1+\phi} \), which is time-invariant. When the South produces both traded goods beginning in period 36, its terms of trade are equivalent to its productivity ratio \(\left(\frac{H_{S}^{N}}{H_{S}^{N}} \right)^{1+\phi} \), thus both rise with an increase in the South's human capital.

Figure 13 shows that if there were no WTO restrictions, the South country will use an export subsidy for the initial 35 periods instead of a non-traded commodity consumption tax, and it no longer relies heavily on the savings subsidy to promote exports. The switch of sign in the current account from the benchmark to the "no-WTO restrictions" case implies that, ideally, the South would like to manipulate its terms of trade rather than its current account. However, if the ability to explicitly subsidize exports is absent due to WTO restrictions, it must "over" distort both the intertemporal margin and the non-traded margin.
5 Coordinated Policy Problem

In this section, I consider a "coordinated policy" problem in which the North and South could coordinate policies in order to obtain the first-best outcome for the world. I assume that there is a fictitious world planner who maximizes the weighted average of both the North and South utilities by taking advantage of the South country’s learning-by-exporting. The world planner solves

$$\max \sum_{t=0}^{\infty} \beta^t \left\{ \mu u(C_S^t) + (1 - \mu) u(C_N^t) \right\},$$

subject to

$$H_{t+1}^S = H_t^S + (\kappa H_N - H_t^S) \left\{ 1 - \exp \left(-\frac{EX_t^S}{\alpha} \right) \right\};$$

$$c_t^i = n_t^i; \quad N^i = n_t^i(1) + n_t^i(2), \quad i \in \{N, S\};$$

$$c_t^S(z) + c_t^N(z) = A_t^S(z) n_t^S(z) + A_N(z) n_t^N(z);$$

$$n_t^S(z) \geq 0; \quad n_t^N(z) \geq 0, \quad z \in \{1, 2\},$$

where $\mu \in [0, 1]$ is the South country’s Pareto weight.

If the South country exports the traded commodity $z \in \{1, 2\}$, the world utility maximizing behavior of the planner implies the following first-order conditions:

$$\mu u_{c_t^i}(z) - \frac{\lambda_t (\kappa H_N - H_t^S)}{\alpha} \exp \left(-\frac{EX_t^S}{\alpha} \right) = (1 - \mu) u_{c_t^N(z)}; \quad (2)$$

$$u_{c_t^i(z)} \cdot A_t^S(z) = u_{c_t^S}, \quad (3)$$

where λ_t is a multiplier for the law of motion for South human capital, $u_{c_t^i(z)}$ is the country i’s marginal utility of consumption for the traded commodity z, and $u_{c_t^i}$ is the country i’s marginal utility of consumption for its non-traded commodity. Note that the second term in the left side of the condition (2), $\frac{\lambda_t (\kappa H_N - H_t^S)}{\alpha} \exp \left(-\frac{EX_t^S}{\alpha} \right)$, which appears due to learning-by-exporting, is positive. This implies that when the South country exports the traded commodity z, the world planner reduces the South country’s consumption for the exporting good $c_t^S(z)$ in order to take advantage of learning-by-exporting. Condition (3)
shows that there is no distortion between the South’s consumption for the export good and that of non-traded good. If a worker shifts from the non-traded commodity sector to the traded commodity z sector in the South country, this reduces one unit of the non-traded commodity. Thus, the welfare loss is the marginal utility of consumption for the non-traded commodity. However, the worker produces $A_t^S(z)$ units of the traded commodity z. By consuming these units, the worker can enjoy their marginal utility of consumption for the commodity times their marginal product ($A_t^S(z)$). Since the South country does not export the traded commodity z but consumes it, there is no additional welfare gain from learning-by-exporting.35 The conditions (2) and (3) imply that the planner decreases not only the South country’s consumption for the export good but also that for non-traded good. This means that the planner raises the South’s exports by reducing its consumption of domestically produced goods and increasing consumption of the import good.

5.1 Decentralization

In this subsection, I explain the way I find prices and wedges, which imply the first-best allocation for the world. The North country’s non-traded commodity price is normalized to one. Since the North’s relative consumption across goods is undistorted, I use their marginal rate of substitution between non-traded and each respective traded good as world prices. That is, the world price $p_t(z)$ of traded commodity z is defined by

$$p_t(z) \equiv \frac{u_{c_t^N}(z)}{u_{c_t^N}}, \ z \in \{1, 2\},$$

where $u_{c_t^N}(z)$ is the North country’s marginal utility of consumption for the traded commodity z and $u_{c_t^N}$ is the North’s marginal utility of consumption for its non-traded commodity. The

35Note that a non-traded goods consumption tax is needed in the presence of WTO restrictions. If a worker shifts from the non-traded commodity sector to the export commodity sector in the South country, this reduces one unit of the non-traded commodity. Thus, the welfare loss is marginal utility of consumption for the non-traded commodity. However, the worker produces the marginal product of the export commodity, and consumes part of that while exporting the remaining part to increase their consumption of the import commodity. This way, the terms of trade are kept constant. Since the South country still exports some of the additional export commodity, there is additional welfare gain from learning-by-exporting.
world interest rate \(r_{t+1} \) is defined by

\[
r_{t+1} \equiv \frac{u_{c_t^N}}{\beta \cdot u_{c_{t+1}^N}} - 1.
\]

Since the South country has a comparative advantage in the first traded commodity’s production, it produces the first traded commodity and the North produces the second traded commodity. Therefore, the South’s domestic wage is defined by

\[
w_t^S \equiv \left(\frac{p_t(1)}{p_t(2)} \right) \left(\frac{A_t^S(1)}{A_t^N(2)} \right) = p_t^S.
\]

A wedge \(\tau_t^r \) in the South country’s domestic interest rate, a wedge \(\tau_t^{EX} \) in the South’s domestic relative price of the export good to import good, and a wedge \(\tau_t^{NT} \) in the South’s domestic relative price of the export good to non-traded good are defined by

\[
\tau_t^r \equiv \frac{w_{t+1}^S \cdot u_{c_t^S}}{r_{t+1} \cdot w_t^S \cdot \beta \cdot u_{c_{t+1}^S}} - 1 \iff \frac{w_{t+1}^S \cdot u_{c_t^S}}{w_t^S \cdot \beta \cdot u_{c_{t+1}^S}} - 1 = \left(1 + \tau_t^r \right) r_{t+1};
\]

\[
\tau_t^{EX} \equiv \frac{p_t(2) \cdot u_{c_t^S(1)}}{p_t(1) \cdot u_{c_t^S(2)}} - 1 \iff \frac{u_{c_t^S(1)}}{u_{c_t^S(2)}} = \left(1 + \tau_t^{EX} \right) \frac{p_t(1)}{p_t(2)};
\]

\[
\tau_t^{NT} \equiv \frac{u_{c_t^S}}{A_t^S(1) \cdot u_{c_t^S(1)}} - 1 \iff \frac{u_{c_t^S(1)}}{u_{c_t^S}} = \frac{p_t(1)}{(1 + \tau_t^{NT}) p_t^S} = \frac{1}{(1 + \tau_t^{NT}) A_t^S(1)}.
\]

5.2 Results

I use the same parameters for the "coordinated policy" case as in the benchmark economy, except for the South Pareto weight, \(\mu = 0.3283 \), which is chosen so that the model matches the balanced steady state current account.\(^{36}\)

When both the North and South coordinate policies to achieve the world best allocation, the transition to the steady state takes 64 periods as Figure 14 presents. This is 7 periods less than that of "no-WTO restrictions" economy because the world planner facilitates growth through terms of trade distortion even more. During the transition, the patterns of specialization in production undergo three stages, as before: (i) the North produces both traded goods and the South produces the first traded commodity for the first 25 periods; (ii) (iii)

\(^{36}\)If \(\mu \) is greater than 0.3283, the South runs a current account deficit at the steady state. If \(\mu \) is less than 0.3283, it runs a current account surplus at the steady state.
both countries are completely specialized from period 26 to 35; and (iii) the South starts to produce the second traded commodity in period 36. The first stage gets shorter relative to the "no-WTO restrictions" case.

The left panel of Figure 15 shows that the world planner reduces the South’s consumption of the export good (Traded Commodity 1) even more from period 16 than in the "no-WTO restrictions" economy. This increases the South’s exports, making its human capital grow more rapidly through learning-by-exporting than in the "no-WTO restrictions" case. As can be seen in Figure 14, the world planner moves more workers from the non-traded commodity sector to both traded commodity sectors in the South country relative to the "no-WTO restrictions" economy beginning in period 16. This makes the level of South real GDP greater than that in the "no-WTO restrictions" case over the same period because labor productivity in the traded goods production is higher than that in the non-traded commodity’s production.

The right panel of Figure 15 shows that, for initial periods, the world planner raises the South’s imports by 42% of its GDP relative to the "no-WTO restrictions" world by increasing its consumption of the import good (Traded Commodity 2).

This difference in the South’s imports between "coordinated policy" and "no-WTO restrictions" economies initially leads to a larger current account deficit (42% of the South GDP) relative to the "no-WTO restrictions" case. Figure 16 shows that beginning in period 26, when both countries start to be completely specialized, the increase of the South’s exports deteriorate its terms of trade \(\frac{p_t(1)}{p_t(2)} \) much more than in the "no-WTO restrictions" economy. This large deterioration of the South’s terms of trade causes its real exchange rate to be undervalued from period 26 to 35, as shown in Figure 16. Over the same period, the South country’s real GDP grows rapidly due to the fast growth of its human capital, which implies a rapid productivity improvement in traded goods sector. Growth accompanied with real exchange rate undervaluation contrasts with the prediction of the Balassa (1964)-Samuelson (1964) hypothesis. When the South produces both traded goods beginning in period 36, its terms of trade \(\frac{p_t(1)}{p_t(2)} = \frac{(H^S)^{1+\phi}}{e_t-H_t^S} \) improve due to the growth of South human capital. For the same period, the real exchange rate appreciates following the real
GDP growth. This implies that the world planner postpones the Balassa (1964)-Samuelson (1964) effect by deteriorating the South terms of trade.

Figure 17 shows that the world planner uses a bigger export subsidy and a less saving subsidy relative to the "no-WTO restrictions" case. This implies that the world planner calls for more terms of trade manipulation than suggested by No-WTO policies.

6 Welfare Analysis

This paper explores optimal policies in the presence of learning-by-exporting in various environments: with WTO restrictions, with no restrictions, and under policy coordination. An interesting question to ask is what implications these policies have for developing and developed countries’ welfare. In order to answer this question, I measure the welfare changes resulting from moving from the benchmark economy with WTO restrictions to an alternative case. This is accomplished by finding the percentage change in per-period consumption that I should give to a worker in each country in the benchmark such that the worker is indifferent between the two environments.

In the "no-policy" economy, the South country is not aware of the positive externality from learning-by-exporting, thus no policy is implemented to facilitate export-led growth. On the other hand, in the benchmark model, the South government recognizes learning-by-exporting and has an incentive to implement policies to increase exports. Since it cannot directly subsidize exports due to WTO restrictions, it alternatively taxes the non-traded good’s consumption and subsidizes savings. This policy enables the South country to grow faster, benefitting its workers, than in the "no-policy" world. Conversely, moving from the "no-policy" world to the benchmark economy slightly decreases the welfare of the North country. As can be seen in Table 3, moving from the benchmark to a "no-policy" economy results in welfare changes equivalent to a 19.12% decline and 0.06% increase in per-period consumption of the South and the North, respectively.

If the South country is allowed to manipulate its terms of trade ("no-WTO restrictions"
case), both the North and South benefit from welfare improvement relative to the benchmark economy. Without restrictions on policies, the South country subsidizes exports to both reduce its consumption of the export good and increase consumption of the import good. This policy generates a large deterioration in the South's terms of trade and a current account deficit. This policy makes the South grow faster without raising savings heavily to promote exports, which improves the welfare of the South relative to the benchmark economy. In the "no-WTO restrictions" world, the North's welfare also increases due to improved terms of trade compared with the benchmark economy. This "win-win" outcome through terms of trade manipulation is reflected in the positive welfare gains of 14.05% and 0.45% in per-period consumption of the South and North, respectively.\(^{37}\) This is contrary to Bagwell and Staiger (1999)'s view that the WTO improves world welfare by preventing zero-sum terms of trade manipulation.\(^{38}\)

As shown in Table 3, if both countries coordinate policies to achieve the first-best allocation, both countries' welfare rises significantly compared with the benchmark economy. The fictitious world planner manipulates the terms of trade of both countries so that the South grows faster through learning-by-exporting. This leads to increased welfare gains equivalent to 13.16% and 1.22% in per-period consumption of the South and North, respectively. However, moving from the "no-WTO restrictions" economy to the "coordinated policy" world, the North is better off whereas the South is worse off. The world planner pulls down the relative price of the South's export good to its import good even further than the "no-WTO restrictions" economy. Even though this makes the South country grow faster, the larger deterioration of the South's terms of trade hurts its welfare. On the other hand, the North benefits from its improved terms of trade. However, the welfare changes of both countries

\(^{37}\) Although the South country is a small open economy that cannot affect world prices, the South government can manipulate its internal terms of trade (the relative price of its exporting goods to importing goods in the South domestic markets) and grow rapidly through learning-by-exporting. However, the North's welfare does not increase because its terms of trade are not changed by the South's economic policies.

\(^{38}\) There may be other reasons that WTO restrictions improve the welfare of developing countries. For instance, Bajona and Chu (2010) claim that WTO restrictions increase China’s welfare by reducing subsidies to the inefficient state-owned sector.
moving from the "no-WTO restrictions" case to the "coordinated policy" economy are quantitatively modest, resulting in a 0.79% decrease for the South and 0.78% increase for the North.

7 Sensitivity Analysis

Recall that I calibrate my model such that the South and North emulate China and U.S., respectively. I end the paper by seeing how sensitive responses of China (South) and U.S. (North) are to the degree of learning-by-exporting. The degree of learning-by-exporting is measured by a rise in a firm’s productivity accompanied by a 10% increase in exports. According to Park, Yang, Shi, and Jiang (2010), a firm’s productivity increases by 11% to 13% in China if it experiences an exogenous 10% rise in exports. Table 4 shows that if I use 8.82% on the degree of learning-by-exporting, the benchmark model still generates the simultaneous growth and current account surplus in China. However, the levels of both the average growth rate of China’s relative real GDP per capita and its current account over GDP decrease relative to the benchmark calibration. If the degree of learning-by-exporting is one tenth of the highest value of the micro estimate, that is 1.30%, the South does not need to run a current account surplus to take advantage of learning-by-exporting. This result shows that the cross-country differences in the degree of learning-by-exporting may explain the heterogeneity in the pattern of current accounts across developing countries.

8 Conclusion

This paper examines whether learning-by-exporting rationalizes key macroeconomic behavior of fast-growing developing countries. I also explore which policies exploit learning-by-exporting, their implications for aggregates such as the current account and the real exchange rate, the welfare consequences for developing and developed economies, and whether restricting the set of policies to non-trade related policies matters.

In order to answer these questions, this paper builds a two-country general equilibrium
growth model in which a developing economy benefits from learning-by-exporting as it trades with a developed economy. If policies are restricted by the WTO to non-trade related policies, the optimal policy for the developing country is to tax their non-traded good’s consumption and subsidize savings, which rationalizes the observed current account surpluses of rapidly growing developing economies. This policy improves the welfare of developing country relative to a "no-policy" competitive equilibrium.

If there were no WTO restrictions, the developing country optimizes by directly subsidizing exports, generating a large deterioration in their terms of trade and reversing the response of their current account from surplus to deficit. Optimizing in this fashion raises the welfare of both countries relative to the model with WTO restrictions, as it generates faster economic growth in the developing economy and improvement of the terms of trade in the developed economy. I also consider a “coordinated policy” problem to obtain the first-best outcome for the world. In this setup, the developing country’s terms of trade deteriorate even further and it runs a greater current account deficit relative to the “no-WTO restrictions” case.

The model not only provides a new explanation regarding "global imbalances" but also allows me to investigate the connection between growth, current account surplus and WTO restrictions. Lastly, unlike previous studies, I also explore optimal policies in the presence of learning-by-exporting, and welfare implications for countries under different regimes.
Appendix

A Derivation of the Implementability Condition

The North representative worker solves:

$$\max_{t=0}^{\infty} \beta^t u(C_t^N),$$

subject to

$$\sum_{t=0}^{\infty} \left(\prod_{i=0}^{t} \frac{1}{1+r_i} \right) \left(c_t^N + p_t(1) \cdot c_t^N(1) + p_t(2) \cdot c_t^N(2) - N^N \right) = b_0^N. \quad (4)$$

The worker’s first order conditions are:

$$\frac{\beta u_{c_{t+1}^N}}{u_{c_t^N}} = \frac{1}{1+r_{t+1}};$$

$$\frac{u_{c_t^N}(z)}{u_{c_t^N}} = p_t(z), \; z \in \{1, 2\}.$$

Plugging the above first order conditions into the North worker’s present-value budget constraint (4) yields

$$\sum_{t=0}^{\infty} \left(\prod_{i=1}^{t} \frac{\beta u_{c_i^N}}{u_{c_{i-1}^N}} \right) \left(c_t^N + \frac{u_{c_t^N(1)}}{u_{c_t^N}} \cdot c_t^N(1) + \frac{u_{c_t^N(2)}}{u_{c_t^N}} \cdot c_t^N(2) - N^N \right) = b_0^N. \quad (5)$$

Since $u_{c_i^N}$’s, $i \in \{1, 2, \ldots, t-1\}$ are canceled out in $\left(\prod_{i=1}^{t} \frac{\beta u_{c_i^N}}{u_{c_{i-1}^N}} \right)$, I have

$$\sum_{t=0}^{\infty} \left(\frac{\beta^t u_{c_0^N}}{u_{c_0^N}} \right) \left(c_t^N + \frac{u_{c_t^N(1)}}{u_{c_t^N}} \cdot c_t^N(1) + \frac{u_{c_t^N(2)}}{u_{c_t^N}} \cdot c_t^N(2) - N^N \right) = b_0^N. \quad (5)$$

Multiplying both sides of equation (5) by $u_{c_0^N}$, I obtain the implementability condition

$$\sum_{t=0}^{\infty} \beta^t \left(u_{c_t^N} \cdot c_t^N + u_{c_t^N(1)} \cdot c_t^N(1) + u_{c_t^N(2)} \cdot c_t^N(2) - u_{c_t^N} \cdot N^N \right) = u_{c_0^N} \cdot b_0^N. \quad (6)$$

B Computation Algorithm

The following algorithm is used to solve the benchmark model.

1. Guess the Lagrangian multiplier Φ of the implementability condition (6).
2. Given Φ and $b_0^N = 0$, solve the following value function using value function iterations and obtain the optimal decision rules:

$$V(H_t^S, \Phi) \equiv \max \left[u(C_t^S) + \Phi \left(u_{c_t^N} \cdot c_t^N + u_{c_t^N(1)} \cdot c_t^N(1) + u_{c_t^N(2)} \cdot c_t^N(2) - u_{c_t^N} \cdot N^N \right) \right] ,$$

subject to

$$H_{t+1}^S = H_t^S + (\kappa H_t^N - H_t^S) \left\{ 1 - \exp \left(-\frac{EX_t^S}{\alpha} \right) \right\} ;$$

$$N^i = n_t^i + n_t^i(1) + n_t^i(2); \quad c_t^i = n_t^i, \ i \in \{N, S\} ;$$

$$c_t^N(z) + c_t^S(z) = A_t^N (z) n_t^N (z) + A_t^S (z) n_t^S (z) ;$$

$$\frac{u_{c_t^N(z)}}{u_{c_t^N}} \leq \frac{1}{A_t^N (z)}; \quad n_t^N (z) \geq 0; \quad n_t^S (z) \geq 0, \ z \in \{1, 2\} ;$$

$$\frac{u_{c_t^N(1)}}{u_{c_t^N(2)}} = \frac{u_{c_t^N(1)}}{u_{c_t^N(2)}} .$$

3. Using the optimal decision rules, simulate for transition to steady state.

4. Check if the implementability condition (6) is satisfied. If not, go to Step 1 and repeat the above procedure.
References

Table 1: Parameter Values of the Benchmark Model Economy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta = 0.96$</td>
<td>Discount factor</td>
</tr>
<tr>
<td>$1/\gamma = 0.5$</td>
<td>Intertemporal elasticity of substitution</td>
</tr>
<tr>
<td>$\psi = 0.2438$</td>
<td>Expenditure share on traded goods</td>
</tr>
<tr>
<td>$\eta = 0.5516$</td>
<td>Expenditure share on the first traded commodity ($\eta \psi$)</td>
</tr>
<tr>
<td>$\kappa = 0.99$</td>
<td>South human capital at the steady state (κH^N)</td>
</tr>
<tr>
<td>$N^N = 1$</td>
<td>The North country’s labor</td>
</tr>
<tr>
<td>$N^S = 1$</td>
<td>The South country’s labor</td>
</tr>
<tr>
<td>$b^S_0 = 0$</td>
<td>The South country’s initial debt</td>
</tr>
<tr>
<td>$H^S_0 = 0.5269$</td>
<td>The South country’s initial human capital</td>
</tr>
<tr>
<td>$H^N = 19.8941$</td>
<td>The North country’s human capital</td>
</tr>
<tr>
<td>$\phi = 0.0522$</td>
<td>Labor productivity in the second traded commodity production</td>
</tr>
<tr>
<td>$\alpha = 33.8838$</td>
<td>Degree of learning-by-exporting</td>
</tr>
</tbody>
</table>

Table 2: Average of Aggregate Variables from 1991 to 2007 (Unit: %)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth rate of China’s real GDP per capita relative to the U.S.</td>
<td>7.52</td>
<td>7.52</td>
</tr>
<tr>
<td>China’s current account over GDP</td>
<td>3.12</td>
<td>10.61</td>
</tr>
<tr>
<td>U.S. current account over GDP</td>
<td>−6.00</td>
<td>−0.84</td>
</tr>
<tr>
<td>China’s export over GDP</td>
<td>25.22</td>
<td>23.45</td>
</tr>
<tr>
<td>Appreciation rate of China’s real exchange rate</td>
<td>1.46</td>
<td>9.27</td>
</tr>
</tbody>
</table>
Table 3: Welfare Gain or Loss (Unit: Per-Period Consumption)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>South</th>
<th>North</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>−19.12%</td>
<td>+0.06%</td>
</tr>
<tr>
<td>No-Policy</td>
<td>+14.05%</td>
<td>+0.45%</td>
</tr>
<tr>
<td>Benchmark</td>
<td>+13.16%</td>
<td>+1.22%</td>
</tr>
<tr>
<td>Coordinated Policy</td>
<td>−0.79%</td>
<td>+0.78%</td>
</tr>
</tbody>
</table>

Table 4: Impact of Degree of Learning-by-Exporting

<table>
<thead>
<tr>
<th>Variable (Unit: %)</th>
<th>Data</th>
<th>Degree of Learning-by-Exporting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benchmark</td>
<td>8.82</td>
</tr>
<tr>
<td></td>
<td>(11.91)</td>
<td></td>
</tr>
<tr>
<td>Growth rate of</td>
<td>7.52</td>
<td>7.52</td>
</tr>
<tr>
<td>China rel. GDPPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China CA over GDP</td>
<td>3.12</td>
<td>10.61</td>
</tr>
<tr>
<td>U.S. CA over GDP</td>
<td>−6.00</td>
<td>−0.84</td>
</tr>
<tr>
<td>China EX over GDP</td>
<td>25.22</td>
<td>23.45</td>
</tr>
</tbody>
</table>
Figure 1: China’s Exports and Economic Growth

Source: PWT, WDI

Figure 2: Current Account Imbalances of U.S. and China

Source: WEO
Figure 3: Time Path of South Tax and Subsidy (Benchmark)

Figure 4: Time Path of South Human Capital and Labor (Benchmark)
Figure 5: Time Path of South Consumption, Export, and Import (Benchmark)

Figure 6: Time Path of South Key Aggregates (Benchmark)
Figure 7: Time Path of South Human Capital and Labor (Benchmark and No-Policy)

Figure 8: Time Path of South Consumption, Export, and Import (Benchmark and No-Policy)
Figure 9: Time Path of South Key Aggregates (Benchmark and No-Policy)

Figure 10: Time Path of South Human Capital and Labor (Benchmark and No-WTO)
Figure 11: Time Path of South Consumption, Export, and Import (Benchmark and No-WTO)

Figure 12: Time Path of South Key Aggregates (Benchmark and No-WTO)
Figure 13: Time Path of South Tax and Subsidy (Benchmark and No-WTO)

Figure 14: Time Path of South Human Capital and Labor (Benchmark, No-WTO, and Coordinated Policy)
Figure 15: Time Path of South Consumption, Export, and Import (Benchmark, No-WTO, and Coordinated Policy)

Figure 16: Time Path of South Key Aggregates (Benchmark, No-WTO, and Coordinated Policy)
Figure 17: Time Path of South Tax and Subsidy (Benchmark, No-WTO, and Coordinated Policy)