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Abstract 

This paper reports meta-regressions of substitution elasticities between greenhouse-gas 

(GHG) polluting and nonpolluting inputs in agricultural production. We treat energy, fertilizer, 

and manure collectively as the “polluting input” and labor, land, and capital as nonpolluting 

inputs. We estimate meta-regressions for samples of Morishima substitution elasticities for labor, 

land, and capital vs. the polluting input. Much of the heterogeneity of Morishima elasticities can 

be explained by type of primal or dual function, functional form, type and observational level of 

data, input categories, the number of outputs, type of output, time period, and country categories. 

Each estimated long-run elasticity for the reference case, which is most relevant for assessing 

GHG emissions through life-cycle analysis, is greater than 1.0 and significantly different from 

zero. Most predicted elasticities remain significantly different from zero at the data means in the 

long run. These findings imply that life-cycle analysis based on fixed proportions production 

functions could provide grossly inaccurate measures of GHG of biofuel.  

Keywords: greenhouse gas polluting inputs, input substitution, life-cycle analysis, meta-

regression, Morishima elasticity, production function. 

 

JEL Codes: Q16, Q20. 

                                                 
1
 Boying Liu is a Ph.D. Graduate Research Assistant and C. Richard Shumway is a Regents Professor in 

the School of Economic Sciences, Washington State University.   

 

The authors gratefully acknowledge the helpful suggestions of Ana Espinola-Arredondo, Phillip R. 

Wandschneider, Tristan Skolrud, and Ben Smith. This research was supported by Agriculture and Food 

Research Initiative Competitive Grant 2012-67009-19707 from the USDA National Institute of Food and 

Agriculture, by the Washington Agricultural Research Center, and by the USDA National Institute of Food 

and Agriculture Hatch grant WPN000275. 



2 

 

1. Introduction  

Biofuel has become a major substitute for fossil fuel energy sources. It has 

important benefits such as decreasing dependence on foreign oil imports, providing 

additional markets for agricultural products, and creating job opportunities in rural areas. 

However, despite its appeal as a renewable energy source, there is ongoing debate 

whether biofuel alleviates environmental concerns. Some studies conclude that biofuel 

can mitigate greenhouse gas (GHG) emissions (e.g., Farrell et al., 2006), whereas others 

find that biofuel may result in nearly as much or even more GHG emissions as 

petroleum-based fuels (e.g., Solomon, 2010; Fargione et al., 2008; Searchinger et al., 

2008).   

Measurement of GHG emissions from biofuel is typically examined through life-

cycle analysis (LCA). LCA assesses the emissions associated with the entire life of 

biofuel, from its feedstock production to its end use. An accurate LCA is important for 

environmental policy decisions. For instance, the U.S. Energy Independence and Security  

Act (EISA 2007) requires the U.S. Environmental Protection Agency to create and 

enforce a threshold of life-cycle GHG reduction through use of renewable energy. 

Previous studies on LCA generally assume fixed-proportions production functions and 

consequently do not account for any input ratio response to changing market and policy 

conditions. However, a change in the relative price of an input that generates GHG 

emissions could induce substitution away from that input and alter emissions and 

environmental policy consequences (Rajagopal and Zilberman, 2008).  

This paper provides empirical evidence on substitutability between GHG-

polluting inputs and nonpolluting inputs in agricultural production, which is the main 
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feedstock source for biofuel in the U.S.
2
 We estimate a meta-regression for samples of 

elasticities of substitution for polluting and non-polluting inputs. Our findings have 

important implications because significant substitutability between polluting and non-

polluting inputs may greatly alter life-cycle GHG emissions from renewable energy. 

A large number of empirical studies have estimated elasticities of input 

substitution in agricultural production, but their estimates vary considerably. The research 

tool, meta-analysis, provides a way to summarize and analyze the scattered empirical 

outcomes on a certain topic (Glass, 1976). In economics, meta-regression is the most 

commonly applied method of meta-analysis (e.g., Bateman and Jones, 2003; Bellavance 

et al., 2009; Bureau et al., 2010). The observations used for the dependent variable are 

estimates obtained from prior empirical studies. The independent variables are factors 

expected to be relevant for explaining the heterogeneity of empirical outcomes (Stanley 

and Jarrell, 1989). Meta-regression can provide a combined estimate as well as identify 

sources of variation in prior estimates (Nelson and Kennedy, 2009). In this paper we use 

meta-regression to investigate substitution elasticities between polluting and non-

polluting inputs in agricultural production relevant to biofuel feedstock production.
3
 

Three previous meta-regression articles have addressed substitution elasticities. 

Boys and Florax (2007) conducted a meta-regression to examine the Allen elasticity of 

substitution between labor and capital in the agricultural sector. Koetse et al. (2008) 

                                                 
2
 Biofuel feedstock can be provided by agricultural crops and cellulosic biomass. In the U.S. very little 

cellulosic biomass is currently used because of the inadequacy of technology to convert cellulose to fuel, so 

agricultural crops are the primary source of feedstock. Therefore, in this paper we confine our attention to 

input substitutability in agricultural feedstock production.  

3
 We only consider GHG emission in this paper. Hence, “polluting input” means “GHG-polluting input”.  
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focused on the Morishima elasticity of substitution between capital and energy for all 

industries. Stern (2012) investigated shadow substitution elasticities between oil, coal, 

gas, and electricity in the whole economy. We differ from the existing literature in three 

aspects: We examine Morishima elasticities of substitution between GHG-polluting 

inputs (energy, fertilizer, and manure) and non-polluting inputs (labor, land, and capital) 

in agricultural production. We include a larger number of primary articles (65) on 

agricultural production for our meta-regression than do Boys and Florax (2007) which 

includes 35 papers. And, our estimates of substitution elasticities provide a basis for 

integrating input substitution into LCA of biofuels for purposes of GHG assessment.  

The paper is organized as follows. We address issues associated with the choice 

and measurement of input substitution elasticities in section 2. We describe the selection 

process and the characteristics of primary studies in section 3. Section 4 identifies 

potential sources of heterogeneity in empirical outcomes and explains the choice of 

independent variables. We next discuss the econometric issues and models in section 5. 

The results of meta-regression are reported in section 6. Section 7 concludes.  

2. Choice of Dependent Variables  

  2.1 Elasticity of substitution definition 

The elasticity of input substitution, originally introduced by Hicks (1932) for 

analysis of production with two inputs, measures the relative change in input ratios with 

respect to a relative change in the marginal rate of technical substitution with output held 

constant:  

1 2
12

12

ln( / )

ln

d x x

d MRTS
                                                            (1) 
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Where σ is the elasticity of input substitution, 
ix represents input i , 1,2i  , and

12MRTS is 

the marginal rate of technical substitution between the two inputs.  

Three alternative generalizations are identified in the literature when production 

involves three or more inputs – Allen, Morishima and Shadow elasticities of substitution. 

The Allen elasticity of substitution (AES) is a one-price-one-factor elasticity of input i to 

the price of input j  with all other prices and output held fixed. It measures the share-

weighted relative change in conditional input demand with respect to a change in the 

price of another input: 

/A

ij ij jS                                                       (2) 

where 
A

ij is the AES between inputs i and j ; ij is the conditional cross-price elasticity of 

input i with respect to the price of input j ; jS is the cost share of input j . The AES is the 

most commonly reported substitution elasticity and is symmetric, i.e., 
A A

ij ji  . 

However, it is also the least useful because it adds no additional information beyond the 

conditional input demand cross-price elasticity and the input’s cost share (Blackorby and 

Russell, 1989).  

The Morishima elasticity of substitution (MES) is a one-price-two-factor 

elasticity of the input ratio to the price of input j with all other prices and output held 

fixed. It can be written as  

 M

ij ij jj                                                             (3) 

where
M

ij is the MES between inputs i and j . It can also be calculated from the AES: 

( - )      M A A

ij j ij jjS                                                    (4) 
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Unlike the AES, the MES is asymmetric, so 
M M

ij ji  . 

The shadow elasticity of substitution (SES) is a two-price-two-factor elasticity of 

the input ratio to the price ratio, so it allows the prices of input i and j  to change while 

holding output and all other prices constant. Like the AES, the SES is symmetric. 

Although it is the broadest generalization of the two-input elasticity of substitution, it is 

rarely reported in empirical studies.
4
  

Two cost shares are essential for each method of computing the SES from 

reported conditional price elasticities, AES, or MES. However, they are seldom reported 

in empirical studies. It is sometimes impossible to compute all cost shares from reported 

data and parameter estimates, especially for papers estimating functions other than the 

cost function.
5
 Consequently, we necessarily dismiss the SES as a candidate for our 

dependent variable because of inadequate data. 

Although the MES is seldom reported in our primary articles, it is a conceptually 

superior definition to the AES because it focuses on changes in the input ratio, and it is 

typically possible to compute it directly from reported conditional price elasticities or 

AES. Except for the two studies that report MES, i.e., Debertin et al. (1990) and 

Napasintuwong et al. (2005), we convert whatever elasticities are reported in each study 

into MES. We use equation (3) to determine MES for studies that report conditional input 

price elasticities. For studies that use the translog cost function and only report AES, it is 

often feasible to first compute an input cost share and then use equation (4) to determine 

                                                 
4
 In our selected studies, only Debertin et al.(1990) report the SES.  

5
 Stern (2012) investigated shadow substitution elasticities between different types of fuel, but he only 

included papers in his meta-regression sample that estimated a translog cost function.  
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MES. For studies that report neither conditional input price elasticities nor AES, 

additional computation is required, the specific nature of which depends both on 

functional form and type of function (e.g., cost, profit, production) estimated.  

2.2 Computation of MES based on different functional forms and types of function  

2.2.1 Translog cost function  

The largest number of empirical studies estimate a translog cost function. For 

such, the cost share equations can be expressed as (Bingswanger, 1974): 

ln lnj j ij i jy

i

S v w Q                                       (5) 

where w is input price, Q is the output level, and jv , ij and jy  are parameters to be 

estimated. The conditional own- and cross-price input demand elasticities can be 

expressed, respectively, as:
6
 

                                        / 1jj jj j jS S                                                      (6) 

                                        /ij ij i jS S                                                           (7) 

The AES can be specified directly from these parameters and shares as:  

2 2( ) / /A

jj jj j j j jj jS S S S                                                  (8) 

/ 1 /A

ij ij i j ij jS S S                                                       (9) 

Parameter estimates are routinely presented in the primary studies but cost shares 

often are not. The cost shares can be obtained if a study reports the conditional own-price 

input demand elasticities or the own AES. By rearranging equation (6) or (8), we achieve 

                                                 
6
 The expressions for the own- and cross-price conditional input demand elasticities and the AES are the 

same for multiple-output as for single-output models.  
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2 (1 ) 0j jj j jjS S      or                                       (10) 

2(1 ) 0A

jj j j jjS S                                                (11) 

Then we solve for the cost shares subject to the constraints that (0,1)jS  and
1

1
n

j

j

S


 .
7
 

The conditional input demand elasticities or the AES can then be calculated via equations 

(6)-(7) or (8)-(9), respectively, and the MES via equation (3) or (4).  

2.2.2 Generalized Leontief cost function 

A typical Generalized Leontief cost function can be specified as (Lopez 1982): 

1/2 1/2 2( , ) ij i j i i

i j i

C w Q Q b w w Q w                                 (12) 

where ijb and αi are  parameters to be estimated. The conditional input demand functions 

are defined as 

1/2

2j

i ij i

j i

w
x b Q Q

w


 
  

 
                                           (13) 

 The conditional own- and cross-price input demand elasticities for this cost function 

can be computed from the parameters as follows:  

1/2

2

j

ii ji

j ii i

wQ
b

x w




 
   

 
                                              (14) 

1/2

2

j

ij ij

i i

wQ
b

x w


 
  

 
                                                     (15) 

                                                 
7
 If an article also presents AES, cost shares can be further validated by rearranging equation (9):

/ ( 1)A

i j ij ijS S    .  
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Alternatively, as long as a study reports the parameter estimates and the own-price 

elasticities of conditional input demand, the cross-price elasticities can be solved by

ii
ij ij

ij

j i

b
b






 


. Then the MES can be obtained via equation (3).  

2.2.3 Profit function – transformation from uncompensated to compensated elasticities  

Uncompensated elasticities are often reported (or easily derivable) in studies that 

estimate a profit function in which both outputs and inputs are treated as variable. To 

compute the MES, we need to first convert the uncompensated elasticities into 

compensated elasticities. In addition, the model based on the profit function is often 

associated with multiple outputs. The compensated elasticities of input demand can be 

obtained as (Lopez, 1984 ):  

        
1

u u u u

ij ij im mn mi    


   (16) 

where the subscript m (n) denotes output m (n),  u

ij is a matrix of uncompensated input 

demand elasticities with respect to input prices,  u

mn  is a matrix of uncompensated 

output supply elasticities with respect to output prices, u

im  is a matrix of 

uncompensated input demand elasticities with respect to output prices, and  u

mi is a 

matrix of uncompensated output supply elasticities with respect to input prices. 

Then we can use equation (3) to determine the MES. A study reporting an 

estimated profit function is included in our meta-sample if all the above uncompensated 

elasticities are given or can be calculated from information reported in the study.  
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 2.3 Input classification  

In agricultural production, GHG emissions occur mainly from the use of three 

inputs: energy, nitrogen fertilizer, and manure.
 8

 In this paper, we treat energy, fertilizer, 

and manure use as the “polluting input”.
 9

 The polluting input accounts for nearly all the 

GHG emissions created through the production of agricultural biofuel feedstock. We 

include labor ( l ), land ( d ), and capital ( k ) as non-polluting inputs.
10

 For one pair of 

inputs, the MES is asymmetric and its value depends on which input price changes. For 

purpose of facilitating price regulation (e.g., a carbon tax) on the polluting input, we are 

interested in changes in the ratio of a non-polluting input and the polluting input as the 

price of the polluting input varies. As a result, three MES, denoted as
M

op , are computed 

and investigated separately in this study, where subscript o and p , respectively, represent 

non-polluting inputs ( l , d , and k ) and the polluting input.  

                                                 
8
 There are four types of GHG: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated 

gases. The first three types of GHG pollution occur with agricultural production. Specifically, CO2 is 

generated by the use of electricity, fossil fuel, or oil; CH4 is generated from animal manure; N2O is emitted 

when nitrogen is added to the soil through the use of synthetic fertilizer and through the breakdown of 

nitrogen in animal manure and urine (EPA, 2014).  

9
 All fertilizer is included because the empirical studies rarely treat nitrogen fertilizer as a separate input. 

Nitrogen is nearly always aggregated with other fertilizers such as phosphorous and potassium. Nitrogen is 

the major nutrient in fertilizer and accounted for 48 percent of total fertilizer cost during the years 1960 to 

2011 (USDA, 2014b). 

10
 Land can increase GHG through land clearing. In this paper, our primary focus is on U.S. agricultural 

production, so extensive margin impacts that could be particularly important in developing countries are 

ignored. Hence, land is treated as a non-polluting input.  
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The assignment of specific inputs in the empirical models to our input categories 

is reported in Table 1. Two input category classification issues warrant particular 

explanation. First, part of the polluting input is frequently aggregated with other inputs. 

Specifically, energy is reported as a separate input in only 23 percent of the selected 

studies. It is usually aggregated into materials, intermediate inputs, or other inputs. 

Additionally, 15 percent of the articles aggregate fertilizer into a chemicals input 

category. In general, chemicals is an aggregate of fertilizer and pesticides. The 

expenditure share of fertilizer in the USDA chemicals category averaged 66 fpercent 

during the period 1960 - 2011 (USDA, 2014a). In terms of manure, 97 percent of the 

studies aggregate applied manure into the fertilizer category or another input category 

rather than reporting it as a separate input. Second, nonpolluting input categories in the 

primary studies are sometimes structured differently from our classification. Labor and 

capital are sometimes disaggregated into several subcategories. For example, labor is 

often separated into family labor and hired labor. If family labor is treated as a fixed or 

quasi-fixed input, we only use the MES between hired labor and the polluting input as the 

observation in the labor elasticity sample. If both family labor and hired labor are 

variable inputs, we include the elasticities with respect to family labor and hired labor as 

two separate observations. Also, land is sometimes aggregated into land and structures, 

real estate, or even capital. We introduce dummy variables in our meta-regression to 

control for these input classification issues.  

3. Meta-Regression Sample  

We developed our sample of studies by first searching combinations of keywords 

anywhere in an article using Google Scholar. The keywords used were “agriculture” or 
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“agricultural” or “corn” or “soybean”, “production”, “elasticity” or “elasticities”, 

“substitution” or “substitutability”, and “input demand” or “factor demand”.  As a 

complement, we referred to a literature review by Salhofer (2000) and two previous 

meta-analysis papers: Boys and Florax (2007) and Koetse et al. (2008). For each selected 

article, we also checked papers in the reference lists. Finally, we used Econlit and 

Agricola databases to supplement our search.  

Our literature search generated 126 studies. Several sampling restrictions were 

imposed on the retained articles. Since we need to allow for different substitution 

elasticities between pairs of inputs, studies estimating only a constant elasticity of 

substitution functional form were excluded from our sample. An article was dismissed if 

it did not report the MES and did not provide enough information for calculating it. We 

also dismissed studies in which the variable inputs were not adequate for our purpose. 

For example, we ruled out Williams and Shumway (2000) because its variable inputs 

only included fertilizer, pesticides, and nonchemical materials. Some studies for which 

the MES could be computed only by using cost shares were dismissed because two or 

more computed cost shares were out of the range (0,1) .
11

 The reported results in such 

studies were suspect. Finally, a paper was excluded if the sample size for its estimation 

was not provided. After the sampling restrictions were imposed, we were left with 65 

primary studies.  

The MES can be negative; however, this indicates lack of necessary curvature of 

the production function for cost minimization. For instance, a negative estimate of
M

op

                                                 
11

 If only one computed cost share in a study was out of the range (0,1) , we used 1j i

i j

S S


  to 

approximate it. 
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implies substitution from a non-polluting input to the polluting input when the price of 

the polluting input increases. Alternatively, it can result from a positive own-price 

conditional demand elasticity, which also is not consistent with cost minimization. 

Following Koetse et al.(2008), we dismissed negative MES empirical outcomes. This 

resulted in a sample of 225 estimates from 64 studies for
M

lp , a sample of 120 estimates 

from 34 studies for
M

dp , and a sample of 262 estimates from 58 studies for
M

kp .12    

4. Independent Variables   

4.1 Sources of MES variation   

All but one of the independent variables included in the meta-regression are 

dummy variables. They are mostly variables that describe characteristics of the primary 

studies, such as features of the model and data. We follow three criteria for creating 

dummy variables. First, we consider common explanatory variables that were used in the 

three previous meta-regression papers on substitution elasticities: Boys and Florax 

(2007), Koetse et al. (2008), and Stern (2012).Their variables emphasized function type, 

functional form, technology, model structure, data characteristics, estimation methods, 

and measurement of output. Second, we introduce additional dummy variables relevant to 

elasticities of substitution in biofuel feedstock production. For example, we include 

variables to deal with classification problems between polluting and non-polluting inputs, 

data period relative to initiation of biofuel production, and country categories. Finally, we 

eliminate dummy variables that are both insignificant in the meta-regression and cause 

                                                 
12

 For studies with one or more inputs treated as fixed, only the MES between variable inputs are computed. 

A dummy variable to indicate it is a short-run elasticity is created as one of the independent variables in the 

meta-regression.  



14 

 

severe multicollinearity. Table 2 describes the dummy variables and reports the 

distribution of values for each.  

Function type.  Different estimates of substitution elasticities are potentially due 

to the different function types used in the primary studies (Boys and Florax, 2007; 

Capalbo, 1988; Burgess, 1975). For example, duality theory documents that substitution 

elasticities can be equivalently derived mathematically from estimates of production, 

cost, or profit functions. In practice, the elasticities derived from these three function 

types are often very different, even when the same data are used. This is because the 

stochastic assumptions in the estimation equations are not equivalent. In our meta-

regression, we create two dummy variables for the function types.  A cost function is the 

primary function from which elasticities of substitution are computed and has a value of 

zero in both dummy variables. 

Functional form. Much evidence from empirical studies shows that estimated 

elasticities vary across flexible functional forms (e.g., Baffes and Vasavada, 1989; 

Shumway and Lim, 1993). We introduce a dummy variable for functional forms to 

distinguish between the translog and alternative functional forms. 

Technology. Estimates of elasticities are dependent on assumptions about 

technological change and returns to scale maintained in the estimation (Koetse et al., 

2008). Two dummy variables are generated to distinguish between models that allow for 

non-neutral technological change and non-constant returns to scale, and those that 

constrain estimates on either of these dimensions. 

Model structure. Dynamic models which take account of sluggish input 

adjustment typically provide different empirical estimates of substitution elasticities than 
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static models (e.g., Leblanc and Hrubovcak, 1986; Lambert and Gong, 2010).  A dummy 

variable distinguishes between them. 

Data characteristics. Koetse et al. (2008) and Stern (2012) found that substitution 

estimates vary significantly with different types of data series. Two dummy variables are 

introduced in our meta-regression for data series to distinguish between time series data 

and either cross-sectional or panel data. The observational unit of data may also impact 

substitution estimates (Boys and Florax, 2007; Stern 2012) and results in our generating 

two dummy variables to distinguish between national and either farm-level or regional 

data.  

Estimation method. The meta-regression results of Boys and Florax (2007) found 

that estimation method had a substantial effect on the substitution estimates. Iterative 

estimation methods, which are most commonly used in the primary studies, produce 

empirical results consistent with maximum likelihood estimation.  A dummy variable 

distinguishes between these estimation methods and other techniques. 

Measurement of output. Empirical substitution estimates from multiple-output 

models are often different from those estimated with single-output models, even when 

other conditions are the same (e.g., Hertel and McKinzie, 1986; Capalbo, 1988). The 

same is true for studies that examine aggregate agriculture as a single output and those 

that examine an individual commodity or commodity group (Boys and Florax, 2007). We 

introduce two dummy variables for the output type to distinguish between single-output 

models of aggregate agriculture and other output specifications.
13

  

                                                 
13

 Ideally we would specify a dummy variable to have a value of zero if the output is corn or soybean 

supply and one otherwise. Unfortunately, none of the selected articles examines only corn and/or soybeans.  
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Input classification. We introduce three dummy variables regarding the polluting 

inputs. A dummy variable equals zero if energy is a separate input and one if not. Similar 

dummy variables are also created for fertilizer and manure, respectively. Four dummy 

variables are introduced in the classification of nonpolluting inputs. Two are used to 

indicate aggregate labor and capital, respectively. The other two indicate whether land is 

a separate variable or aggregated with buildings and structures or with all capital.  

Time period. Agricultural products began to be used as a source of biofuel 

feedstock in the early 1980’s. A temporal dummy variable is created to distinguish 

models that include data after biofuel feedstock production began and those that only use 

earlier data.  We also include a dummy variable for the time horizon of the estimate. It 

distinguishes elasticities calculated from models with all inputs treated as variable, 

defined as a long-run elasticity for our analysis, from those calculated from models with 

one or more constrained inputs.  

Country classification. Input substitution elasticity estimates may differ across 

countries due to different levels of technology development, different relative input costs, 

and different agricultural product mixes.  In order to obtain an elasticity estimate that is 

representative for the U.S., we generate two dummy variables to distinguish the U.S. 

from developing countries and from other developed countries.  

4.2 Publication bias 

Publication bias may be caused by refereed publication preferences for selecting 

statistically significant results and censoring values that are inconsistent with theoretical 

expectations.
14

 It can pose a problem for any summary of literature, including meta-

                                                 
14

 Heckman two-step method is not applicable for publication bias because it requires a sample containing 

both published and unpublished effects to estimate the inverse Mills ratio. However, for meta-analysis, we 
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analysis, if it tends to disguise the real empirical effects (Sutton et al., 2002; Stanley, 

2008).  It has been found to exist in areas of empirical economics (e.g., Ashenfelter et al., 

1999; Doucouliagos, 2005). In terms of elasticities of input substitution, Stern (2012) 

points out that the publication bias for elasticities is likely the result of censoring positive 

own-price demand elasticities, which would cause the average of reported MES estimates 

to be more positive than it actually is. Therefore, a control for publication bias is essential 

for an accurate meta-analysis. Following his argument, we correct for publication bias by 

including the inverse of the square roots of sample size as an independent continuous 

variable in the meta-regression. 

5. Econometric Method 

5.1 Econometric issues  

Econometric problems in the meta-regression typically include heteroskedasticity, 

dependence of observations, and multicollinearity (Florax, 2002; Nelson and Kennedy, 

2009; Dalhuisen et al., 2003; Florax et al., 2005).  

5.1.1 Heteroskedasticity 

The Breusch-Pagan test shows that heteroskedasticity cannot be rejected, even at 

a 1 percent significance level for each case.
15

  Heteroskedasticity can be dealt with in 

several ways. Koetse et al. (2010) document that a weighted least squares approach is 

preferred to either OLS or a mixed effects model for meta-regression. It is also more 

robust in the presence of potentially omitted variables. Two weights commonly used in 

meta-regression are the square roots of sample size and the inverse of standard errors of 

                                                                                                                                                 
do not observe unpublished and unreported estimates. Hence, meta-regression usually includes the inverse 

of the square roots of sample size in prior studies or standard deviation of prior estimates as one regressor 

to correct the publication bias. 
15

 The 2  for 
M

lp , 
M

dp  and 
M

kp  are 52.46, 68.64 and 43.08, respectively. 
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the estimates. We follow Stern (2012) and Florax et al. (2005) by using the square roots 

of sample size as the weights. There are two reasons for this selection: (a) like Stern’s 

SES dependent variable, the MES is also a nonlinear combination of parameter 

estimates,
16

 and (b) the standard errors of many MES estimates are not provided or 

cannot be computed accurately by information available in the primary studies so use of 

standard errors is not an option.  

5.1.2 Dependence of observations 

Many primary studies report multiple elasticity estimates, typically for different 

years or time periods, which implies that the observations are probably correlated.  The 

three meta-analyses of elasticities of substitution (Boys and Florax, 2007; Koetse et al., 

2008; and Stern, 2012) all employ models that are silent on potential dependence of 

observations. Failure to account for correlation across observations from the same study 

may cause underestimation of standard errors. The correlation across observations in the 

same study can be accounted for by using a panel data model estimator. The fixed effects 

panel data model is not suitable for our study because some of our primary studies only 

report a single elasticity estimate. In this case, the fixed effects model does not improve 

accuracy of the estimation and also results in severe multicollinearity.
17

 The Lagrange 

Multiplier test is conducted for each MES sample to determine whether a random effects 

panel data estimator should be used. The null hypothesis is that a weighted least squared 

model without random effects is appropriate. We reject the null hypothesis only for the 

                                                 
16

 Stanley and Rosenberger (2009) argue that the square root of sample size is the more appropriate weight 

in the weighted least squares approach than the inverse of the standard error when the dependent variable of 

the meta-analysis is a nonlinear combination of parameter estimates in primary studies. 

17
 Jeppesen et al. (2002) discuss why the random effects model is preferred to the fixed effects model.  
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MES sample of capital.
18

 Therefore, a weighted least squares estimator is used for the 

MES of both labor and land with respect to the polluting input and a random effects panel 

data estimator is used for the capital-polluting input MES.  

5.1.3 Multicollinearity 

For a meta-analysis comprised of a relatively small number of observations and a 

large number of dummy variables, multicollinearity among independent variables can be 

a problem even without using a fixed effects estimator (Dalhuisen et al. 2003; Florax et 

al. 2005). We compute variance inflation factors (VIF) for each of the MES samples to 

determine whether multicollinearity seriously inflates our estimate of the variance. If the 

variance inflation factors (VIF) are less than 5 for all independent variables in an MES 

model, we keep all variables in the meta-regression. If some are greater than 5, we drop 

the insignificant independent variable with the highest VIF if the number of significant 

variables and the goodness of fit (adjusted R-square) increase. We continue this process 

until there are no insignificant variables with a VIF greater than 5 or until deleting 

another variable fails to increase both the number of significant variables and the 

goodness of fit. This results in our excluding dummies for cross sectional data and panel 

data in the estimation of the MES of land and capital vs. the polluting input. We do not 

exclude any dummies in the estimation of the MES of labor vs. the polluting input. 

5.2 Econometric model 

5.2.1 Weighted least squares model 

The meta-regression model with correction for publication bias can be specified 

as (Stanley et al., 2008; Stanley, 2008):
19

 

                                                 
18

 The 2  for 
M

lp , 
M

dp  and 
M

kp  are 0.29, 2.09 and 9.56, respectively. 
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where ,o l d , ,
ˆ M

op s is the MES estimate between input o (labor or land) and the polluting 

input from the ths study,
,op srX is the thr dummy variables for the ths study, 

sn is the 

sample size of the ths study,
s is the error term of the ths study with zero mean and 

variance 2

s .  

Using the square roots of sample size as the heteroskedasticity weights, the 

weighted least squares model is:  

, , ,

1

R
M

op s op s s op r op sr s

r

n n X u   


                                     (18) 

where , ,
ˆM M

op s s op sn  is the weighted MES estimate, and s s su n   is the new error term 

of the ths study with zero mean and variance 2

sv .  

5.2.2 Random effects panel data model 

The random effects panel data model with publication bias can be specified as 

(Jeppesen et al., 2002; Greene 7
th

 edition, p.411): 

, , , ,

1

1
ˆ

R
M

kp st kp s kp r kp str st

r s

X
n

    


 
    

 
 

                                (19) 

where ,
ˆ M

kp st is the tht  MES estimate between capital and the polluting input from the ths

study, ,kp s is the random heterogeneity specific to the ths study and is constant across 

                                                                                                                                                 
19

 Stanley et al. (2008) estimates a similar model using the standard error instead of sample size to account 

for publication bias.  
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observations from the ths study,  
,( ) 0kp sE   , 

2 2

,( )kp sE   , , ,( ) 0kp s kp mE    for s m . 

Due to the heteroskedasticity of the MES sample, we first weight the capital-polluting 

input dataset by the square root of sample size (Florax et al., 2005). Then the random 

effects model becomes  

, , , ,

1

R
M

kp st kp s s s kp r kp str st

r

n n X u   


                                (20) 

where , ,
ˆM M

kp s s kp sn  is the weighted MES estimate, and st s stu n   is the new error term 

with zero mean and variance 
2 . Since the number of MES estimates that can be 

calculated between capital and the polluting input is not the same for all primary studies, 

the data of ,
ˆ M

kp st  constitutes an unbalanced panel data set.  

6 Meta-regression results   

Empirical estimates of the meta-regression equations for labor, land, and capital 

MES relative to the polluting input are reported in Table 3. The adjusted values range 

from 0.49 for labor to 0.87 for land, both of which are higher than the mean adjusted 

of 0.44 from 140 meta-analyses reported by Nelson and Kennedy (2009). For the panel 

data estimation of the capital-polluting input MES, the between value is 0.93 and the 

overall value is 0.68. These goodness of fit measures show that our meta-regression 

models do a reasonable job of explaining the variation present in each sample. In our 

assessment of variables that affect MES estimates, we will use a significance level of 

10%. 

2R

2R

2R
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6.1 MES variation  

Coefficients of the publication bias correction variable for the MES of labor and 

land vs. the polluting input are -7.909 and -7.405, respectively. They are significantly 

different from zero, which implies that prior studies with larger sample sizes produce 

significantly higher empirical estimates of these MES. The coefficient of publication bias 

correction for the MES of capital vs. the polluting input is also negative but not 

statistically significant. 

Both dummy variables for function type are negative and statistically significant 

for the labor elasticity. They imply that the labor-polluting input MES estimates obtained 

from estimated profit, production, or differential input demand functions are significantly 

lower than from estimated cost functions. Estimated profit functions give a significantly 

lower estimate of the capital-polluting input MES than other estimated functions, and 

production and differential input demand functions give a significantly higher estimate of 

the land-polluting input MES than estimated cost or profit functions. This provides clear 

evidence of support for the claim that alternative types of functions yield different 

empirical outcomes.  

Neither alternative functional forms, the imposition of neutral technological 

change, nor dynamic model structures has a significant effect on any of the MES 

estimates. Boys and Florax (2007) similarly found that the choice of functional form does 

not significantly alter the AES between labor and capital. Koetse et al.(2008) also found 

that the MES between capital and energy is not significantly affected by the inclusion of 

a non-neutral technical change parameter. 
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Although found to be insignificant in previous meta-analyses, the imposition of 

constant returns to scale causes significant positive effects on labor and negative effects 

on land vs. the polluting input MES estimates. If agricultural production actually exhibits 

non-constant returns to scale, an empirical study with the imposed misspecification of 

constant returns to scale gives biased estimates of the MES of labor and land vs. the 

polluting input.  

Data characteristics significantly influence each MES estimate. Our results 

suggest that the use of cross sectional or panel data rather than time series data 

significantly reduces the estimates of labor-polluting input MES. This is counter to 

Koetse et al.(2008) and Stern (2012) who found that using cross sectional or panel data 

provides higher substitution elasticities. Using state or regional level data significantly 

raises the estimated MES of labor and capital vs. the polluting input and lowers the MES 

estimate of land vs. the polluting input. Using farm level data leads to a significantly 

higher MES estimate of labor and lower estimate of land vs. the polluting input.  

Only the MES estimate between land and polluting inputs is significantly affected 

by the estimation method. It is reduced by choosing estimation methods other than 

maximum likelihood or iterative methods. This is similar to what Boys and Florax (2007) 

found for the AES between labor and capital.   

A model with multiple outputs leads to significantly higher estimates for the MES 

of land and capital with respect to the polluting input relative to a single output model. 

Analyzing a subsector of agriculture rather than aggregate agriculture, however, produces 

a significantly lower estimate for the land-polluting input MES.  
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Not including polluting inputs separately in the model significantly affects one or 

more MES estimates. For example, not treating energy as a separate input significantly 

lowers the labor and land vs. polluting input MES. Not treating fertilizer or manure as 

separate inputs significantly alters the land-polluting input MES.  

Disaggregating labor significantly lowers the labor-polluting input MES, and 

aggregating land with capital significantly lowers both the land and capital vs. polluting 

input MES.  Aggregating land with buildings and structures or disaggregating capital has 

no significant effect on the respective MES. 

Using all pre-1981 data has a significant negative effect on the MES estimate for 

labor-polluting input and a significant positive effect on the MES estimate for land-

polluting input. These coefficients imply that the period during which an agriculture-

based biofuel industry has developed has made it easier for labor but harder for land to 

substitute for the polluting input.  

Short-run substitution elasticities estimates for land and capital vs. the polluting 

input are significantly lower than long-run elasticities. That would be consistent with land 

and capital inputs adjusting more slowly than labor to long-run equilibrium levels.  

The estimated MES between land and the polluting input is significantly higher in 

developing than in developed countries. The substitutability between land and capital vs. 

the polluting input is also significantly higher in non-U.S. developed countries than in the 

U.S. and developing countries. 

6.2 MES estimates and LCA  

Based on our choice of meta-regression explanatory variables, the reference case 

(i.e., when all dummies are equal to zero) represents a long-run MES between non-
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polluting inputs for a study that includes aggregate labor, land, and capital as non-

polluting input categories and the polluting input of energy, fertilizer, and manure. It is 

based on a static translog cost function that permits non-neutral technological change and 

non-constant returns to scale, treats U.S. aggregate agriculture as a single output, includes 

post-1981 time series data, and uses a maximum likelihood estimator. It is regarded as the 

most pertinent case for LCA models. The intercepts of the meta-regression represent the 

estimated MES of the reference case. They are all greater than 1.0 and significantly 

different from zero, indicating that substantial substitution potential exists between the 

polluting and non-polluting inputs in the reference case. Our results also suggest that 

labor is the best substitute for the polluting input, followed by land and capital. 

Therefore, if an LCA model is set up based on our reference case, the assumption of 

fixed-proportion production of biofuel feedstock would lead to a potentially seriously 

inaccurate measure of GHG emissions. 

Three additional sets of MES estimates are presented in Table 4. The mean MES 

is the elasticity evaluated at the means of all explanatory variables. The short-run mean 

MES is the elasticity evaluated at the means of all variables except for the dummy 

variable for short-run elasticity, which is set to one. The long-run mean MES is the 

elasticity evaluated at the means of all variables except short run elasticity, which is set 

equal to zero. These alternatives are admittedly less relevant to LCA modeling because 

there are no observations with mean (or nearly mean) values of most dummy variables.  

All MES estimates are lower than for the reference case, and those between 

capital and the polluting input are insignificantly different from zero. Nevertheless, the 

MES for labor and land vs. the polluting input is significant both at the data means and 
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for the long run with other variables at their mean values. Also, the MES for labor-

polluting input is significant for the short run with other variables at their mean values.  

Consequently, even if the agricultural feedstock production sector in an LCA model is 

based on cases that differ from our reference case in some aspects, it would still be 

necessary to take account of substitutability between some non-polluting inputs and 

polluting inputs.   

These four sets of MES estimates provide a strong implication that LCA models 

need to allow for input substitution in the production of agricultural feedstocks for 

biofuel. When an energy-price regulation is imposed or market price ratios change, the 

change in the quantity of the polluting input used in feedstock production does not follow 

a fixed-proportions path. LCA models that do not account for input substitutability 

cannot accurately assess GHG emissions when facing a price change in the polluting 

input and thus could lead to an inappropriate environmental policy conclusion.  

7. Conclusions 

This paper examines whether the empirical evidence on input substitution in 

agricultural biofuel feedstock production is sufficiently strong to warrant integration into 

life-cycle analyses. We estimate Morishima elasticities of substitution of non-polluting 

inputs with respect to the GHG polluting inputs in agricultural production relevant to 

biofuel feedstock by using meta-regression procedures. Energy, fertilizer, and manure are 

collectively treated as the “polluting input” while labor, land, and capital are considered 

as free of GHG pollution. For the meta-regression, we examined 65 empirical studies that 

include 225 elasticity estimates for labor, 120 for land, and 262 for capital vs. the 

polluting input.  We estimate separate meta-regression models for each of these three 
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samples. The first two elasticities are estimated by weighted least squares regression and 

the third by a random effects panel-data estimator.  

The results show that much of the heterogeneity of Morishima elasticities of 

substitution for nonpolluting inputs vs. the polluting input in the primary studies can be 

explained by type of primal or dual function, functional form, type and observational 

level of data, input categories, the number of outputs, type of output, time period, and 

country categories. The reference case in our meta-regression is regarded as the most 

relevant case for assessing GHG emissions through life-cycle analysis. It represents a 

long-run MES between the non-polluting inputs of labor, land, and capital and the 

polluting input of energy, fertilizer, and manure. It is based on a static translog cost 

function that permits non-neutral technological change and non-constant returns to scale, 

treats U.S. aggregate agriculture as a single output, includes post-1981 time series data, 

and uses a maximum likelihood estimator. It is regarded as the most pertinent case for 

LCA models of U.S. biofuel feedstocks. Each estimated substitution elasticity for the 

reference case is greater than one and significantly different from zero. Additionally, 

mean predicted elasticities imply that long-run input substitutability of labor and land vs. 

the polluting input might also exist in a wide variety of cases.  

These findings imply that when a price regulation (e.g., carbon tax) is imposed on 

the polluting input, the proportions of non-polluting inputs and the polluting input vary 

and could have an important effect on GHG emissions. Therefore, life-cycle analyses 

based on fixed proportion production functions for biofuel feedstocks could lead to an 

inaccurate measure of GHG emissions from biofuel and thus provide an inappropriate 

reference for policy makers.   
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Table 1: Classification of input categories 

Input 

category 

Inputs in primary studies that are included in the 

category 

Labor Family labor, hired labor, human labor, operator labor, 

self-employed labor, contract labor 

Land Land, real estate 

Capital Capital, machinery inputs, animal power, inventories, 

water, irrigation, tractors, physical capital, durable 

equipment, buildings and farm produced durables, 

working capital, plowing services, minor implements, 

major implements 

Energy, 

fertilizer and 

manure 

Energy, mechanical energy, chemical energy, fuel and 

oil, fertilizer and lime, manure, chemicals, 

agrichemicals, biological inputs 
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Table 2: Descriptions of explanatory variables 

Dummy variables 

Dummy variable 

value = 0 

Dummy variable 

value = 1 

Percent of observations with 

values of one in each sample 
M

lp  M

dp  M

kp  

Function type 

Cost or other functions Profit function 18.2% 5.8% 26.0% 

Cost or profit functions 

Functions other than 

cost and profit 

functions 

4.4% 6.7% 4.2% 

Functional form 

Translog functional 

form  
Other functional form 

10.2% 6.7% 10.7% 

Technology 

Allows non-neutral 

technological change 

Imposes neutral 

technological change 

27.1% 34.2% 33.2% 

Allows non-constant 

returns to scale 

Imposes constant 

returns to scale  

24.4% 86.7% 23.3% 

Model structure 

Static model Dynamic  model 7.6% 3.3% 6.1% 

Data Characteristics 

Time series or panel 

data 
Cross sectional data 

22.7% 19.2% 26.3% 

Time series or cross 

sectional data 
Panel data 

2.3% 2.5% 2.3% 

National or farm level 
Regional/state level 

data 

14.2% 11.7% 18.7% 

National or 

regional/state level 
Farm level data 

16.9% 12.5% 20.6% 

Estimation method 

MLE 
Other types of 

estimators  

27.6% 41.2% 36.3% 

Measurement of output 

Single output Multiple outputs 20.4% 18.3% 35.1% 

Aggregate agriculture 
A subsector of 

agriculture  

5.8% 8.3% 5.0% 

Input classification 

Energy is a separate 

input 

Energy is not a separate 

input 

84.9% 81.7% 82.4% 

Fertilizer is a separate 

input 

Fertilizer is not a 

separate input 

50.2% 39.2% 36.3% 

Manure is a separate 

input 

Manure is not a 

separate input 

93.8% 96.7% 98.5% 

Aggregate labor  Disaggregate labor 33.3% -  

Land  
Buildings and/or 

structures  

- 5.8% - 
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Aggregate capital Disaggregate capital  - - 69.5% 

Land is separated from 

capital  

Land is included in 

capital 

- 20.8% 14.9% 

Time period 

Includes post-1981 

observations 

All pre-1981 

observations 

59.1% 71.7% 54.2% 

Long run elasticity  Short run elasticity 41.3% 9.2% 37.8% 

Country classification 

The U.S. or non-U.S. 

developed countries 
Developing countries 

38.7% 59.2% 34.4% 

The U.S. or developing 

countries 

Non-U.S. developed 

countries 

14.2% 5.8% 14.9% 

Correction for publication bias 

Inverse of square roots 

of sample size 

Mean 0.157 0.158 0.152 

Maximum 0.250 0.250 0.250 

Minimum 0.021 0.021 0.021 
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Table 3: Meta-regression results, Morishima elasticities of substitution with respect 

to polluting input  

 Labor, M

lp  Land, M

dp  Capital, M

kp  

Intercept 2.977*** 1.772*** 1.414** 

 (0.626) (0.524) (0.678) 

Publication bias 

correction 
-7.909*** -7.405***  -1.938 

 (2.337) (1.642) (2.028) 

Function type  

Profit function -0.685*** 0.155 -0.436** 

 (0.200) (0.266) (0.253) 

Functions other than 

cost and profit 

functions 

-1.277*** 1.543*** 0.044 

 (0.246) (0.266) (0.367) 

Functional form 

Other functional 

form 
0.348 -0.101 0.426 

 (0.245) (0.299) (0.287) 

Technology 

Neutral 

technological 

change 

-0.232 -0.030 -0.294 

 (0.201) (0.133) (0.196) 

Constant returns to 

scale  
1.091*** -0.715*** 0.292 

 (0.219) (0.265) (0.272) 

Model structure 

Dynamic  model -0.390 0.360 -0.019 

 (0.268) (0.310) (0.319) 

Data characteristics 

Cross sectional data -1.057*** omitted omitted 

 (0.336)   

Panel data -0.916** omitted omitted 

 (0.421)   

Regional/state level 

data 
1.052*** -0.727*** 0.739** 

 (0.272) (0.275) (0.333) 

Farm level data 0.682** -1.060** -0.044 

 (0.309) (0.611) (0.344) 

Estimation method 

Other types of 

estimators  
-0.054 -1.207*** 0.137 

 (0.172) (0.192) (0.217) 

Output measurement 

Multiple outputs 0.195 1.741*** 0.459** 
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 (0.175) (0.165) (0.191) 

A subsector of 

agriculture  
-0.001 -0.393*** 0.120 

 (0.207) (0.534) (0.234) 

Input classification 

Energy is not a 

separate input 
-0.283*** -0.299* -0.183 

 (0.166) (0.157) (0.201) 

Fertilizer is not a 

separate input 
-0.194 -0.733*** -0.119 

 (0.163) (0.208) (0.288) 

Manure is a not 

separate input 
-0.489 0.918* -0.407 

 (0.296) (0.513) (0.452) 

Disaggregate labor -0.492*** - - 

 (0.173)   

Real estate/land and 

structure 
- -0.114 - 

  (0.271)  

Disaggregate capital  - - 0.150 

   (0.290) 

Land is included in 

capital 
- -1.369*** -0.853*** 

  (0.157) (0.242) 

Time period 

All pre-1981 data -0.239* 0.601*** -0.193 

 (0.144) (0.186) (0.218) 

Short run elasticity -0.059 -0.439* -0.518*** 

 (0.161) (0.246) (0.189) 

Country classification 

Developing country 0.187 1.240*** 0.112 

 (0.202) (0.454) (0.282) 

Non-U.S. developed 

country 
0.071 0.704*** 0.540** 

 (0.159) (0.145) (0.210) 

F value 10.84*** 37.22*** - 

Chi-square value - - 395.39*** 

R-square 0.542 0.889 - 

Adjusted R-square 0.492 0.865 - 

Within R-square - - 0.004 

Between R-square - - 0.926 

Overall R-square - - 0.678 

Sample size 225 120 262 
Notes: “-” indicates the variable is not used as an explanatory variable in the initial regression, 

and “omitted” means the variable is eliminated due to multicollinearity; ***, **, * = statistically 

significant at 1 percent, 5 percent and 10 percent level, respectively; standard errors are in 

parentheses. 
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Table 4: Predicted mean MES 

 Labor, M

lp  Land, M

dp  
Capital,

M

kp  

Predicted mean MES 0.718* 0.598* 0.631 

 (0.488) (0.404) (0.583) 

Predicted mean short-run MES  0.684* 0.199 0.309 

 (0.497) (0.462) (0.586) 

Predicted mean long-run MES  0.742* 0.638* 0.463 

 (0.493) (0.405) (0.593) 

Notes: * = statistically significant at 10 percent for 1-sided test; standard errors are in 

parentheses.  
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