Prioritization for Infrastructure Investment in Transportation

Jeremy Sage
Prioritization for Infrastructure Investment in Transportation

Jeremy L. Sage, PhD
Freight Policy Transportation Institute
School of Economic Sciences
Washington State University
Presentation Overview:

• Motivation
 • Why do we (and should we) care about the productivity of Freight Transportation?

• The Cost of Congestion in Washington State

• Framework for Determining Truck Freight Benefits and Economic Impacts.

• Further Exploration of Reliability.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>…Individual Congestion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yearly delay per auto commuter (hrs)</td>
<td>16</td>
<td>39</td>
<td>43</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Travel Time Index</td>
<td>1.07</td>
<td>1.19</td>
<td>1.23</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>Planning Time Index (Freeway Only)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.09</td>
</tr>
<tr>
<td>"Wasted" fuel per auto commuter (gallons)</td>
<td>8</td>
<td>19</td>
<td>23</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>CO2 per auto commuter during congestion (lbs)</td>
<td>160</td>
<td>388</td>
<td>451</td>
<td>376</td>
<td>380</td>
</tr>
<tr>
<td>Congestion cost per auto commuter (2011 dollars)</td>
<td>$342</td>
<td>$795</td>
<td>$924</td>
<td>$810</td>
<td>$810</td>
</tr>
</tbody>
</table>

…The Nation's Congestion Problem					
Travel Delay (billion hrs)	1.1	4.5	5.9	5.5	5.5
"Wasted" fuel ($billion)	0.5	2.4	3.2	2.9	2.9
CO2 produced during congestion (billions of lbs)	10	47	62	56	56
Truck congestion cost ($billion)	-	-	-	$27	$27
Congestion cost ($billion)	$24	$94	$128	$120	$121

Drawn from TTI’s Urban Mobility Report
Small = <500,000
Medium = 500,000 to 1 million
Large = 1 million to 3 million
Very Large = >3 million
…and this is just to operate the trucks.

Which brings us to the first FPTI project.
Project Overview:

• Congestion on the urban road network in the United States is estimated to cost the nation in excess of $100 billion, as each and every vehicle using the public roadway system experiences some degree of:

 • Wasted fuel
 • Lost productivity
 • Reduced mobility

• The cost value is large, but can it inform state level policy?

 • Additional knowledge is needed to understand:
 • How industries are impacted by congestion
 • What their likely response will be to increasing congestion
 • The net impact of these industry responses to the Washington State economy.
Step 1: Survey Freight Dependent Industries in Washington State
- Design CATI
- Administer CATI to 6,624 private-sector freight companies and carriers
- 1,062 Respondents

Step 2: Calculate Direct Costs of Congestion to Freight Dependent Industries
- Calculate total revenue of freight dependent industries from IMPLAN
- Calculate increased trucking and inventory costs due to congestion by industry
- Estimate the direct costs of congestion to freight dependent industries (*Assuming 60% of costs are passed to consumers*)

Step 3: Translate Rising Business Costs into Gains or Losses of Jobs and Output for Each Industry
- Enter direct costs into IMPLAN models
- Link trade flow data from each regional IMPLAN model
- IMPLAN multipliers translate costs into direct, indirect, and induced impacts:
 - *Industry output*
 - *Industry employment*

Step 4: Evaluate the Losses and Gains (in Employment and Industry Output) to Determine the Regional and Statewide Impacts of Congestion
Step 2: Calculate the Direct Costs of Congestion to Freight-Dependent Industries

<table>
<thead>
<tr>
<th>Industry</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, Forestry, Fishing*</td>
<td>$ 14,025,087,392</td>
</tr>
<tr>
<td>Mining*</td>
<td>$ 1,722,882,632</td>
</tr>
<tr>
<td>Construction</td>
<td>$ 39,590,105,088</td>
</tr>
<tr>
<td>Manufacturing*</td>
<td>$ 160,187,755,858</td>
</tr>
<tr>
<td>Retail Trade**</td>
<td>$ 111,814,709,161</td>
</tr>
<tr>
<td>Wholesale Trade**</td>
<td>$ 142,323,314,397</td>
</tr>
<tr>
<td>Transportation/Warehousing*</td>
<td>$ 16,754,995,185</td>
</tr>
<tr>
<td>Waste Management</td>
<td>$ 3,589,177,344</td>
</tr>
</tbody>
</table>

- **Calculating Total Revenue:**
 - Two modifications from IMPLAN’s output values:
 - Subtracted the value of inventory from output to reflect actual sales (*)
 - Adjusted using margins (sales receipts less the cost of the goods sold) to show the total value of the goods sold (**)
Step 2: Calculate the Direct Costs of Congestion to Freight-Dependent Industries

<table>
<thead>
<tr>
<th>Industry</th>
<th>Inventory Cost</th>
<th>Trucking Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, Forestry, Fishing</td>
<td>0.01%</td>
<td>6.00%</td>
</tr>
<tr>
<td>Mining</td>
<td>0.00%</td>
<td>9.24%</td>
</tr>
<tr>
<td>Construction</td>
<td>0.04%</td>
<td>8.28%</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.42%</td>
<td>6.04%</td>
</tr>
<tr>
<td>Retail Trade</td>
<td>0.34%</td>
<td>2.59%</td>
</tr>
<tr>
<td>Wholesale Trade</td>
<td>0.23%</td>
<td>3.16%</td>
</tr>
<tr>
<td>Transportation/Warehousing</td>
<td>0.04%</td>
<td>6.51%</td>
</tr>
<tr>
<td>Waste Management</td>
<td>0.00%</td>
<td>2.86%</td>
</tr>
</tbody>
</table>

- **Inventory Costs** (as percent of total revenue) based on need to hold inventory to combat congestion.

- **Trucking Costs** represent need for additional trucks, and used in conjunction with reported hourly trucking costs ($55-light, $76-heavy, $59-mixture)
Step 2: Calculate the Direct Costs of Congestion to Freight-Dependent Industries

<table>
<thead>
<tr>
<th>Industry</th>
<th>Direct Cost of Congestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, Forestry, Fishing</td>
<td>$505,744,651</td>
</tr>
<tr>
<td>Mining</td>
<td>$95,516,613</td>
</tr>
<tr>
<td>Construction</td>
<td>$1,976,338,046</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>$6,208,877,417</td>
</tr>
<tr>
<td>Retail Trade</td>
<td>$1,965,702,587</td>
</tr>
<tr>
<td>Wholesale Trade</td>
<td>$2,894,856,215</td>
</tr>
<tr>
<td>Transportation/Warehousing</td>
<td>$658,471,311</td>
</tr>
<tr>
<td>Waste Management</td>
<td>$61,590,283</td>
</tr>
</tbody>
</table>

- Totals nearly $14.4 billion
- 20% congestion increase
- 60% cost realization
Step 3: Translate Rising Business Costs into Gains or Losses of Jobs and Output for Each Industry:
Step 3: Translate Rising Business Costs into Gains or Losses of Jobs and Output for Each Industry: Consumer Costs

- Consumers must decrease purchases of services and non-freight dependent goods to pay for the increased costs of freight dependent goods.

- Household consumption function in IMPLAN was modified to incorporate the spending decrease.
 - Weighted by population and income
Step 3: Translate rising business costs into gains or losses of jobs and output for each industry:
STEP 3: TRANSLATE RISING BUSINESS COSTS INTO GAINS OR LOSSES OF JOBS AND OUTPUT FOR EACH INDUSTRY: SOCIETAL BENEFITS

- Freight dependent business must increase spending on resources to counteract increased congestion.
 - Congestion as an inefficiency
 - Spending on Insurance and Capital is placed in corresponding IMPLAN industries.
 - Wages modeled as an increase to employee compensation
Step 4: Evaluate the Losses and Gains to Determine the Statewide and Regional Impacts of Congestion
Step 4: Evaluate the Losses and Gains to Determine the Statewide and Regional Impacts of Congestion

Positive Economic Impacts: Industries add employees and assets to combat congestion

Negative Economic Impacts: Costs to consumers rise and lead to decreased spending on other industries
Step 4: Evaluate the Losses and Gains to Determine the Statewide and Regional Impacts of Congestion

Positive Economic Impacts:
Industries add employees and assets to combat congestion

Negative Economic Impacts:
Costs to consumers rise and lead to decreased spending on other industries

Industries add 17,831 jobs
Industry output grows $3.03 billion
Step 4: Evaluate the Losses and Gains to Determine the Statewide and Regional Impacts of Congestion

Positive Economic Impacts:
- Industries add employees and assets to combat congestion

Negative Economic Impacts:
- Costs to consumers rise and lead to decreased spending on other industries

- Industries add 17,831 jobs
- Industry output grows $3.03 billion

- Industries lose 45,088 jobs
- Industry output declines $6.34 billion
Step 4: Evaluate the Losses and Gains to Determine the Statewide and Regional Impacts of Congestion

Positive Economic Impacts: Industries add employees and assets to combat congestion

- Industries add 17,831 jobs
- Industry output grows $3.03 billion

Negative Economic Impacts: Costs to consumers rise and lead to decreased spending on other industries

- Industries lose 45,088 jobs
- Industry output declines $6.34 billion
Step 4: Evaluate the Losses and Gains to Determine the Statewide and Regional Impacts of Congestion

Positive Economic Impacts: Industries add employees and assets to combat congestion

Negative Economic Impacts: Costs to consumers rise and lead to decreased spending on other industries

- Industries add 17,831 jobs
- Net loss of 27,257 jobs (0.7 percent of statewide total) and $3.3 billion (0.5 percent of statewide total) of industry output
Step 4: Evaluate the Losses and Gains to Determine the Statewide and Regional Impacts of Congestion

<table>
<thead>
<tr>
<th>Industries incurring additional expenditures (positive impacts) in order to combat congestion</th>
<th>Industries suffering from reduced expenditures (negative impacts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation and Information</td>
<td>Health and Social Services</td>
</tr>
<tr>
<td>Administrative Services</td>
<td>Real Estate and Rental</td>
</tr>
<tr>
<td>Retail Trade</td>
<td>Finance and Insurance</td>
</tr>
<tr>
<td>Wholesale Trade</td>
<td>Accommodation and Food</td>
</tr>
<tr>
<td>Government</td>
<td>Arts and Entertainment</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Construction and Utilities</td>
</tr>
<tr>
<td>Management of Companies</td>
<td>Professional and Scientific</td>
</tr>
<tr>
<td>Mining</td>
<td>Educational Services</td>
</tr>
<tr>
<td>Ag, Forestry, and Fishing</td>
<td></td>
</tr>
</tbody>
</table>
Step 4: Evaluate the Losses and Gains to Determine the Statewide and Regional Impacts of Congestion

<table>
<thead>
<tr>
<th>Region</th>
<th>Employment</th>
<th>Output ($millions)</th>
<th>Percentage of Regional Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northwest</td>
<td>-1,786</td>
<td>-$162</td>
<td>-0.48%</td>
</tr>
<tr>
<td>Southwest</td>
<td>-1,622</td>
<td>-$266</td>
<td>-0.52%</td>
</tr>
<tr>
<td>Central Basin</td>
<td>-1,793</td>
<td>-$244</td>
<td>-0.47%</td>
</tr>
<tr>
<td>Northeast</td>
<td>-2,213</td>
<td>-$290</td>
<td>-0.77%</td>
</tr>
<tr>
<td>Southeast</td>
<td>-345</td>
<td>-$31</td>
<td>-0.31%</td>
</tr>
<tr>
<td>Puget Sound</td>
<td>-21,741</td>
<td>-$3,600</td>
<td>-0.90%</td>
</tr>
<tr>
<td>Statewide Total</td>
<td>-29,500</td>
<td>-$4,600</td>
<td>-0.76%</td>
</tr>
</tbody>
</table>

Statewide Total:
- $4.6 billion output
- 29,500 jobs

Northeast:
- $290 million output
- 2,200 jobs

Puget Sound Metro:
- $3.6 billion output
- 21,700 jobs

Southwest:
- $266 million output
- 1,600 jobs

Central Basin:
- $244 million output
- 1,800 jobs

Southeast:
- $31 million output
- 345 jobs
Lessons Learned and Recommendations:

• What do these Findings Suggest for WSDOT’s Policies Towards Addressing Congestion on Corridors Used by Trucks?
 • The state’s economic vitality and livability depend on reliable, responsible, and sustainable transportation.
 • Congestion causes increased direct transportation costs to freight-dependent industries – which translate to increased costs of goods and services to consumers in Washington State.
 • Creates an operational efficiency problem for freight dependent firms: Trip Time ↑ Unproductive time in Traffic ↑ Productivity ↓ resulting in $14 Billion of increased operating costs.
 • These demonstrated economic impacts suggest that WSDOT should prioritize investments that enhance mobility for trucks and freight industries as a way to support the State’s goals of a strong economy.
Lessons Learned and Recommendations:

- Imbedding investment Principles into WSDOT’s *Moving Washington*:
A Framework for Determining Highway Truck–Freight Benefits and Economic Impacts
Background

Truck-freight related benefits should be recognized and acknowledged through quantitative project prioritization process.

Most existing project assessment frameworks do not separately evaluate the truck-freight benefits of proposed highway infrastructure projects.

Unable to capture full-range of truck-freight related impacts stemming from highway investments.

- Direct benefits
- Indirect benefits
Research Objectives

• Propose a transparent methodology for calculating both the direct freight benefits and the larger economic impacts of freight projects.
• Apply the methodology for projects assessment.
Methodology

Identify benefits

- Literature review
- WSDOT current project prioritization process
- Three technical groups (urban goods movement, global gateway, and rural economies)
Methodology

Direct freight benefits:
• Truck travel time savings
• Truck operating cost savings
• Truck emission changes

Economic impacts
• Employment changes
• Regional economic output changes
Methodology

INPUTS
- Project Specific Data Inputs

MODEL FRAMEWORKS
- Travel Demand Model
- Modeling Transportation Related Benefits
- Modeling Economic Impacts Using
 - Washington State CGE

FRAMEWORKS
- CGE: computable general equilibrium model

OUTPUTS
- Benefits from:
 - Travel Time Savings
 - Operating Cost Savings
 - Emissions Changes
- Employment Changes
- Regional Economic Output
Methodology—Economic Impacts Analysis (EIA)—Data

- Utilizes Social Accounting Matrices (SAM) from the 2010 IMPLAN data.
- Aggregate into 20 industrial Sectors:

<table>
<thead>
<tr>
<th>Aggregation Code</th>
<th>Freight Dependent Industries</th>
<th>Aggregation Code</th>
<th>Other Industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGFOR</td>
<td>Agriculture and Forestry</td>
<td>INFO</td>
<td>Information Services</td>
</tr>
<tr>
<td>MIN</td>
<td>Mining</td>
<td>FININS</td>
<td>Financial and Insurance</td>
</tr>
<tr>
<td>UTIL</td>
<td>Utilities</td>
<td>REAL</td>
<td>Real Estate</td>
</tr>
<tr>
<td>CONST</td>
<td>Construction</td>
<td>PROTEC</td>
<td>Professional and Technical</td>
</tr>
<tr>
<td>MANUF</td>
<td>Manufacturing</td>
<td>MANAG</td>
<td>Management</td>
</tr>
<tr>
<td>WTRAD</td>
<td>Wholesale Trade</td>
<td>ADMIN</td>
<td>Administration</td>
</tr>
<tr>
<td>RTRAD</td>
<td>Retail Trade</td>
<td>SOCSER</td>
<td>Social Services</td>
</tr>
<tr>
<td>TRAWAR</td>
<td>Transportation and Warehousing</td>
<td>ARTS</td>
<td>Arts and Entertainment</td>
</tr>
<tr>
<td>TRUCK</td>
<td>Transport by Truck</td>
<td>FOOD</td>
<td>Food Services</td>
</tr>
<tr>
<td>WMAN</td>
<td>Waste Management</td>
<td>OTHR</td>
<td>Other (Including Government)</td>
</tr>
</tbody>
</table>
Methodology—Economic Impacts Analysis (EIA)

- Create four regional CGE models.
 - 2 Geographic scales
 - Long-Run (LR) and Short-Run (SR) scenarios
- Model the infrastructure investment as an improvement in technology.
 - Improves the productivity of the transportation system
 - Initiate the CGE through a counterfactual that shifts the industry supply curve: (Cobb-Douglas shown for simplicity)

\[Q = S(K^\alpha L^{1-\alpha}) \]

- Value of the shift is dependent upon the percent change in operating costs to the trucking industry
Case Study

Interstate-highway widening project
• 10 mile, 2 lanes each direction.
• A critical connector for the region and serves approximately 9,000 trucks daily.
• Freight demand is projected to increase by 30% over the next 10 years.
• Adding one lane each direction.
Case Study -- Transportation Benefits

2016-2035, Thousands of 2010 Dollars

<table>
<thead>
<tr>
<th>Benefit Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHT reduction</td>
<td>295 hours</td>
</tr>
<tr>
<td>Truck travel time savings</td>
<td>$ 8,704</td>
</tr>
<tr>
<td>Truck operating cost savings</td>
<td>$14,613</td>
</tr>
<tr>
<td>Emission impacts</td>
<td>-$5,370</td>
</tr>
<tr>
<td>Total</td>
<td>$17,947</td>
</tr>
</tbody>
</table>
Case Study -- Economic Impacts

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Demand Model Benefit Output</td>
<td>$4,533,563</td>
</tr>
<tr>
<td>Spokane County Intermediate Expenditures (TRUCK)</td>
<td>$139,875,763</td>
</tr>
<tr>
<td>Statewide Intermediate Expenditures (TRUCK)</td>
<td>$1,760,368,000</td>
</tr>
<tr>
<td>Change in Truck Transport Productivity - Spokane County</td>
<td>3.24%</td>
</tr>
<tr>
<td>Change in Truck Transport Productivity - State</td>
<td>0.26%</td>
</tr>
</tbody>
</table>
Case Study -- Economic Impacts

<table>
<thead>
<tr>
<th>Region</th>
<th>Initial Employment Level</th>
<th>Change in Employment</th>
<th>Change in Activity Quantity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SR</td>
<td>LR</td>
</tr>
<tr>
<td>County</td>
<td>264,128</td>
<td>25.5</td>
<td>77.9</td>
</tr>
<tr>
<td>State</td>
<td>5,647,012</td>
<td>22.4</td>
<td>47.2</td>
</tr>
</tbody>
</table>

- **Price for truck services and regional output sales change:**
 - **County**
 - SR: 1.94% decrease in price and $9.8 million increase in sales
 - LR: 1.67% decrease in price and $28.7 million increase in sales
 - **State**
 - SR: 0.18% decrease in price and $10.5 million increase in sales
 - LR: 0.14% decrease in price and $22.2 million increase in sales
Limitations and Future Work

Limitations of using TDMs
Limited feedback loops between TDM and Impact Models

Future work
• Freight performance data
• Enhancing dynamic nature of models
Freight Performance Data: Reliability

Find a measure of reliability that will be useful and meaningful in a Benefit-Cost (B-C) analysis

This requires:

• Deciding on a measurable definition for travel time reliability.
• Identifying a value to use for reliability in freight transportation.
Current Measures of Reliability

The mean versus variance approach:

- uses the mean travel time as well as the standard deviation of travel times.
- This method is straightforward and relies upon extensive dataset collected from loop detectors, radar detectors, GPS devices, and other technical sensors.
- The larger the size of the standard deviation from the mean, the lower travel time reliability.
Current Measures of Reliability

Percentiles:

- Unreliability is measured and commonly valued as the 95th percentile travel time.
- This approach is presented as a numerical difference between the average travel time and a predictable upper deviation from the average.
- This difference (a real number) is then directly used to monetize the value of unreliability.
Current Measures of Reliability

Percentiles (cont.):

- Estimates the time travelers need to plan their trips in order to be on time

Buffer time is defined as the 95th percentile of the travel time distribution minus the mean time.

\[
\text{Buffer time index} = \frac{95 \text{ percent travel time} - \text{mean travel time}}{\text{mean travel time}} \times 100\%
\]
Current Measures of Reliability

Planning Time Index:
- Estimates the total travel time that should be planned
- The planning time index differs from the buffer time index in that it considers both recurrent delay and unexpected delay

\[
\text{Planning time index} = \frac{95\text{ percent travel time}}{\text{Free flow travel time}} \times 100\%
\]
Measure Recommendations

If sufficient travel time data is available, e.g. every 5 minute loop detector data
• Use the *buffer time index*
• Represents the extra travel time travelers must to add to ensure on-time arrival.

When data is sparse, e.g. low reading frequency GPS data
• Use the *bimodal approach* employed by WSDOT
• Does not require extensive travel time data, but still can examine and classify the reliability based on spot speed data.
Bimodal Method

- Identifies if travel time is:
 - Reliably fast,
 - Reliably slow,
 - Unreliable.

- Travel speeds (in a given time and location segment) follows a mixture of two normal distributions as traffic is composed of two stages: free-flow condition and congestion condition. We can represent truck spot speed distribution by 5 parameters:
 - mean \((\mu_1)\) & standard deviation \((\sigma_1)\) of congested speed.
 - mean \((\mu_2)\) & standard deviation \((\sigma_2)\) of free-flow speed.
 - Proportion of the two distribution \((\alpha)\)
Travel defined as unreliable \textit{iff}:

\[|\mu_1 - \mu_2| \geq |\sigma_1 + \sigma_2|, \alpha \geq 0.2, \text{ and } \mu_1 \leq 0.75 \times V_f \]
<table>
<thead>
<tr>
<th></th>
<th>Night (12 AM – 6 AM)</th>
<th>AM Peak (6 AM – 9 AM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_1</td>
<td>47.641</td>
<td>24.011</td>
</tr>
<tr>
<td>μ_2</td>
<td>60.763</td>
<td>54.437</td>
</tr>
<tr>
<td>σ_1</td>
<td>9.512</td>
<td>11.780</td>
</tr>
<tr>
<td>σ_2</td>
<td>4.652</td>
<td>6.189</td>
</tr>
<tr>
<td>α</td>
<td>0.226</td>
<td>0.547</td>
</tr>
<tr>
<td>If $</td>
<td>\mu_1 - \mu_2</td>
<td>\geq</td>
</tr>
</tbody>
</table>
Conclusion

• A quantitative and transparent methodology capturing freight benefits can be used for freight project impacts assessment and project prioritization.

• Industrial base of a geographical region significantly impacts model outputs.

• The inclusion of a defendable and quantifiable reliability measure will be a significant contribution to the understanding of freight performance measures.
For more Information:

Freight Policy Transportation Institute
Washington State University
School of Economic Sciences
301 Hulbert Hall
Pullman, WA 99164-6210
Phone: 509-335-8489
Email: jlsage@wsu.edu or casavantk@wsu.edu