Performance-Measure Based Asset Management Tool for Rural Freight Mobility

Jeremy Sage, Freight Policy Transportation Institute
Kenneth Casavant, Freight Policy Transportation Institute
Austin Miller, School of Economic Sciences
John Maxwell, Freight Policy Transportation Institute

Transportation Research Forum
March 13th-15th 2014
San Jose, CA
Background

• MAP-21:
 - Increase productivity and economic efficiency of freight infrastructure
 - Create performance-based tools to support transportation agencies
Objectives

• Develop asset management tool for rural freight network:
 ▪ Assess the performance of current transfer facilities
 ▪ Generate framework for improving network
 ▪ Provide data collection plan
Multi-modal Transport

• One shipment, multiple modes
 – Truck-rail, truck-barge, etc.

• Multiple agents

• Multiple planning horizons
Wheat Production and Intermodal Network (WA)
Typical Percentage of Wheat Shipped in Various Modes

- Eastern Oregon
- Northern Idaho
- Southern Idaho
- Northern Washington
- Southern Washington
- Pacific Northwest

Modes:
- Truck
- Barge
- Rail
Network Design Literature

• Minimize transport costs
• Include value of time/reliability
• Include gas emissions
• Urban: congestion
First Steps

• Identify stakeholders
 - State transportation agencies
 - Residents
 - Industry

• Their objective: maximize welfare
First Steps

Welfare

Transportation Efficiency

Nodes
- Location
- Mode type
- Capacity
- etc.

Connections
- Origin-destination pairs
- Capacity
- etc.
Next Steps

1. Measure efficiency and viability of current facilities
2. Identify opportunities for improvement
 - Cost minimization network model
3. Estimate benefit-cost ratios
 - General equilibrium (CGE)
<table>
<thead>
<tr>
<th>Attributes</th>
<th>Agricultural Assembly</th>
<th>Port Clearing</th>
<th>Distribution Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Adequate Land / Space</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>2. Two Class I Railroads</td>
<td>C</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>3. Major Interstate Highway</td>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>4. Proximity to Population Center</td>
<td>X</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>5. Available Air and Water Transportation</td>
<td>X</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>6. On Nodes or Direct Line of Railroad Service</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>7. Public/Private Partnership</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>8. Magnitude of Public Participation</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>9. Positive Working Relationship with WSDOT and other Agencies</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>10. Need for Changing, Directing and Dividing Cargo</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>11. Clearly Established Demand Opportunities</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>12. Combination of Port and Distribution Efficiencies</td>
<td>X</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>13. Labor Availability and Training</td>
<td>C</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>14. Quality of Life</td>
<td>X</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>15. Distance to/from Production Points</td>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>16. Distance to/from Destination Market</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>17. Degree of Facility Automation</td>
<td>C</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>18. Time to Build</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>
Next Steps

1. Measure efficiency and viability of current facilities
2. Identify opportunities for improvement
 - Cost minimization network model
3. Estimate benefit-cost ratios
 - General equilibrium (CGE)
Wheat Production and Intermodal Network (WA)
Next Steps

1. Measure efficiency and viability of current facilities
2. Identify opportunities for improvement
 - Cost minimization network model
3. Estimate benefit-cost ratios
 - General equilibrium (CGE)
Discussion

1. Best strategies for interpreting transport cost savings within a CGE model?

2. Other better approaches to performance-based infrastructure investments?
For more Information:

Freight Policy Transportation Institute
Washington State University
School of Economic Sciences
301 Hulbert Hall
Pullman, WA 99164-6210
Phone: 509-335-8489
Email: jilsage@wsu.edu or casavantk@wsu.edu