Spatial Patterns in Household Demand for Ethanol

Hayk Khachatryan, Ken Casavant and Eric Jessup
Spatial Patterns in Household Demand for Ethanol

Hayk Khachatryan, Ken Casavant and Eric Jessup

Transportation Research Group, Washington State University

51st Annual Transportation Research Forum, 2010
ethanol, like anything else, can be good or bad

Biofuel policies and research
- proponents and opponents

Impact on consumer perception of biofuels
- corn vs. cellulosic feedstocks for ethanol
- the consideration of future consequences
- consumer demand-responsiveness to price changes
Background
- Minnesota’s ethanol policies
- Previous Literature

Theoretical framework
- Transportation fuel demand

Empirical framework
- Basic model
- Spatial expansion model
- Data
- Basic model results
- Spatial model results

Conclusions
Minnesota has been a leader in biofuel policy

Financial incentives
- tax credit for blending (1980 - 1997)
- ethanol production incentive
- E85 promotion - E85 taxed at a lower rate

Consumption mandates
- oxygenate mandate - gasoline must contain 10% ethanol (E10)
- effective August 30, 2013 - E20

Regional biofuels promotion plan
- reduce fossil fuels used in biofuels production (50%, 2025)
- increase regional production of cellulosic fuels (25%, 2015)
- total energy from renewables (25%, 2025)
Minnesota has been a leader in biofuel policy (cont.)

<table>
<thead>
<tr>
<th>State</th>
<th>Number of E85 Stations</th>
<th>State</th>
<th>Number of E85 Stations</th>
<th>State</th>
<th>Number of E85 Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minnesota</td>
<td>351</td>
<td>N. Dakota</td>
<td>31</td>
<td>Idaho</td>
<td>5</td>
</tr>
<tr>
<td>Illinois</td>
<td>192</td>
<td>Tennessee</td>
<td>29</td>
<td>Connecticut</td>
<td>4</td>
</tr>
<tr>
<td>Iowa</td>
<td>123</td>
<td>Arizona</td>
<td>26</td>
<td>Louisiana</td>
<td>4</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>121</td>
<td>Florida</td>
<td>26</td>
<td>Mississippi</td>
<td>4</td>
</tr>
<tr>
<td>Indiana</td>
<td>112</td>
<td>Pennsylvania</td>
<td>26</td>
<td>Utah</td>
<td>4</td>
</tr>
<tr>
<td>Missouri</td>
<td>95</td>
<td>N. Carolina</td>
<td>17</td>
<td>Washington DC</td>
<td>3</td>
</tr>
<tr>
<td>Michigan</td>
<td>91</td>
<td>Washington</td>
<td>15</td>
<td>West Virginia</td>
<td>3</td>
</tr>
<tr>
<td>S. Carolina</td>
<td>85</td>
<td>Kentucky</td>
<td>14</td>
<td>Massachusetts</td>
<td>2</td>
</tr>
<tr>
<td>S. Dakota</td>
<td>80</td>
<td>Maryland</td>
<td>14</td>
<td>Delaware</td>
<td>1</td>
</tr>
<tr>
<td>Colorado</td>
<td>76</td>
<td>Nevada</td>
<td>14</td>
<td>Montana</td>
<td>1</td>
</tr>
<tr>
<td>Ohio</td>
<td>63</td>
<td>Alabama</td>
<td>11</td>
<td>Alaska</td>
<td>0</td>
</tr>
<tr>
<td>Nebraska</td>
<td>48</td>
<td>New Mexico</td>
<td>11</td>
<td>Hawaii</td>
<td>0</td>
</tr>
<tr>
<td>California</td>
<td>40</td>
<td>Oklahoma</td>
<td>11</td>
<td>Maine</td>
<td>0</td>
</tr>
<tr>
<td>Texas</td>
<td>40</td>
<td>Arkansas</td>
<td>8</td>
<td>New Hampshire</td>
<td>0</td>
</tr>
<tr>
<td>Georgia</td>
<td>37</td>
<td>Oregon</td>
<td>8</td>
<td>New Jersey</td>
<td>0</td>
</tr>
<tr>
<td>New York</td>
<td>35</td>
<td>Virginia</td>
<td>8</td>
<td>Rhode Island</td>
<td>0</td>
</tr>
<tr>
<td>Kansas</td>
<td>33</td>
<td>Wyoming</td>
<td>6</td>
<td>Vermont</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1928</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ethanol demand estimation

- minimum information available on household-level ethanol demand
- high (in absolute value) own-price & cross-price elasticities

Spatial considerations

- regional dummy variable approach
- market segmentation approach
- lack of subcounty-level spatial models thus far
relative prices determine ethanol usage patterns

household’s utility in terms of transportation fuels $f(E, G, X)$,

- purchase ethanol if $p_e < \frac{p_g}{r}$, gasoline if $\frac{p_g}{r} < p_e$

where

- E and G denote ethanol and gasoline consumption
- X is a composite good
- p_e and p_g denote prices for ethanol and gasoline
- r is the “fuel switching” price ratio, the rate at which the consumer converts gasoline into ethanol-equivalent gallons
start with a base model

\[y_{it} = \beta_0 + \sum_m \beta_m X_{it} + \theta Z_i + \gamma_t + \psi_t + \epsilon_{it} \]

where

- \(y_{it} \) = monthly ethanol sales
- \(X_{it} \) = matrix of explanatory variables (prices, income, vehicle stock and number of fueling stations)
- \(Z_i \) = distances from E85 pumps-to-racks and pumps-to-highways
- \(\gamma_t \) = regional dummy
- \(\psi_t \) = monthly dummies
- \(\epsilon_{it} \) = error term
there are spatial variations in people’s preferences...

- spatial dependence

\[y_i = f(y_j), \quad i = 1, \ldots, n \quad j \neq i \]

- spatial heterogeneity

\[y_i = X_i \beta_i + \varepsilon_i, \quad i = 1, \ldots, n \]
estimating price-elasticity of demand across the study area

\[y_{it} = \beta_{0t} (v_i, v_i) + \sum_m \beta_{mt} (v_i, v_i) X_{it} + \sum_m \theta_k (v_i, v_i) Z_i + \varepsilon_{it} \]

where

- \(y_{it} \) = monthly ethanol sales
- \(X_{it} \) = matrix of explanatory variables (prices, income, vehicle stock and number of fueling stations)
- \(Z_i \) = distances from E85 pumps-to-racks and pumps-to-highways
- \(\varepsilon_{it} \) = error term
- \((v_i, v_i) \) = projected coordinates of E85 fueling stations
- no categorical variables
geographically weighted regression estimator

\[\hat{\beta}(v_i, v_i) = \left(X' W(v_i, v_i) X\right)^{-1} X' W(v_i, v_i) y \]

where \(W(v_i, v_i) \) is a distance-based weighting matrix

\[
W(u) = \begin{pmatrix}
 w(u)_1 & 0 & 0 & \cdots & 0 \\
 0 & w(u)_2 & 0 & \cdots & 0 \\
 0 & 0 & w(u)_3 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & w(u)_n
\end{pmatrix}
\]
data sources

Minnesota Department of Commerce
- monthly E85 retail prices and sales volumes (1997 - 2009)
- 13,339 observations, 330 fueling stations

Energy Information Administration
- monthly retail gasoline prices
- monthly wholesale gasoline prices

Federal Reserve Economic Data
- per capita income

Minnesota Department of Public Safety
- vehicle stock

Geographic Information Systems
- distances (E85 pumps - racks, highways)

Khachatryan et al., Washington State University
Spatial Differences in Price-elasticities of Ethanol Demand
Spatial Differences in Price-elasticities of Ethanol Demand

Minnesota E85 station map

Khachatryan et al., Washington State University
Spatial Differences in Price-elasticities of Ethanol Demand

- **Basic model**
- **Spatial heterogeneity**
- **Spatial expansion model**
- **Data**
- **Results**

gasoline and ethanol retail prices

![Graph showing gasoline and E85 prices from 2000 to 2008](image)

- **Year**
- **$/gallon**

Khachatryan et al., Washington State University
OLS and 2SLS estimates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-1.75***</td>
<td>-3.18***</td>
<td>-0.77</td>
<td>-1.84***</td>
</tr>
<tr>
<td></td>
<td>(0.86)</td>
<td>(1.26)</td>
<td>(1.20)</td>
<td>(0.86)</td>
</tr>
<tr>
<td>LN(PE)</td>
<td>1.07***</td>
<td>2.11***</td>
<td>0.27***</td>
<td>0.94***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.09)</td>
<td>(0.09)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>LN(PG/PE)</td>
<td>4.35***</td>
<td>4.67***</td>
<td>4.36***</td>
<td>4.22***</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.17)</td>
<td>(0.18)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>LN (INC)</td>
<td>0.41***</td>
<td>0.66***</td>
<td>0.17*</td>
<td>0.44***</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.12)</td>
<td>(0.11)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>LN (VEH)</td>
<td>0.29***</td>
<td>0.22***</td>
<td>0.43***</td>
<td>0.27***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>LN (NSTAT)</td>
<td>-0.27***</td>
<td>-0.22***</td>
<td>-0.47***</td>
<td>-0.24***</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>LN (DISTR)</td>
<td>(0.02)*</td>
<td>-0.01</td>
<td>0.03***</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>LN (DISTH)</td>
<td>0.02***</td>
<td>0.07***</td>
<td>-0.003</td>
<td>0.02***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Twin Cities</td>
<td>2.51***</td>
<td>2.19***</td>
<td>2.88***</td>
<td>2.49***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.07)</td>
<td>(0.09)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Own-price</td>
<td>-3.3</td>
<td>-2.6</td>
<td>-4.1</td>
<td>-3.3</td>
</tr>
<tr>
<td>elasticities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6860</td>
<td>3163</td>
<td>3697</td>
<td>6860</td>
</tr>
<tr>
<td>Adj. R-squared</td>
<td>0.43</td>
<td>0.47</td>
<td>0.45</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Dependent variable = LN(ethanol monthly sales volume)

2003-2008 (OLS)

2003-2006 (OLS)

2007-2008 (OLS)

2003-2008 (2SLS)

***p<0.05, **p<0.1, *p<0.2. Standard errors are in parentheses. Dependent variable is the monthly ethanol sales volume.
geographically varying price-elasticities (2004–2008)
OLS vs. GWR estimates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(PE)</td>
<td>-5.00</td>
<td>-2.70</td>
<td>-2.08</td>
<td>-1.40</td>
<td>-0.50</td>
<td>1.07</td>
<td>0.05</td>
<td>1.06</td>
</tr>
<tr>
<td>ln(PG/PE)</td>
<td>-0.06</td>
<td>2.49</td>
<td>3.35</td>
<td>3.93</td>
<td>5.70</td>
<td>4.35</td>
<td>0.12</td>
<td>1.11</td>
</tr>
<tr>
<td>ln(INC)</td>
<td>-2.10</td>
<td>-0.48</td>
<td>0.95</td>
<td>2.02</td>
<td>2.50</td>
<td>0.41</td>
<td>0.08</td>
<td>1.36</td>
</tr>
<tr>
<td>ln(VEH)</td>
<td>-0.21</td>
<td>-0.02</td>
<td>0.13</td>
<td>0.33</td>
<td>0.59</td>
<td>0.29</td>
<td>0.01</td>
<td>0.21</td>
</tr>
<tr>
<td>ln(NSTAT)</td>
<td>-0.51</td>
<td>-0.39</td>
<td>-0.26</td>
<td>-0.14</td>
<td>0.06</td>
<td>-0.27</td>
<td>0.02</td>
<td>0.15</td>
</tr>
<tr>
<td>ln(DISTR)</td>
<td>-0.19</td>
<td>-0.08</td>
<td>-0.01</td>
<td>0.07</td>
<td>0.75</td>
<td>0.02</td>
<td>0.01</td>
<td>0.14</td>
</tr>
<tr>
<td>ln(DISTH)</td>
<td>-0.22</td>
<td>0.07</td>
<td>0.12</td>
<td>0.20</td>
<td>0.64</td>
<td>0.02</td>
<td>0.01</td>
<td>0.09</td>
</tr>
</tbody>
</table>

\[\rho_i = \frac{\sum_i (\beta(u_i, v_i) - \beta_i)^2}{N}, \quad H_0: \beta(u_i, v_i) = \beta_{OLS}, \quad H_1: \beta(u_i, v_i) \neq \beta_{OLS} \]
what are the policy implications?

Current research
- geographic differences in the price-elasticity of demand for ethanol
- demand for ethanol is highly sensitive to both own- and gasoline-price changes

Limitations
- geographically bounded study area
- some portion of sales attributed to out of state households

Future research
- simulation of ethanol policy effects on environmental emissions
- spatio-temporal matrix
- incorporating flexible fuel vehicle stock data
Thank you!